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The optimization of a system’s configuration options is crucial for determining its performance and func-
tionality, particularly in the case of autonomous driving software (ADS) systems because they possess a
multitude of such options. Research efforts in the domain of ADS have prioritized the development of au-
tomated testing methods to enhance the safety and security of self-driving cars. Presently, search-based
approaches are utilized to test ADS systems in a virtual environment, thereby simulating real-world scenarios.
However, such approaches rely on optimizing the waypoints of ego cars and obstacles to generate diverse
scenarios that trigger violations, and no prior techniques focus on optimizing the ADS from the perspective of
configuration. To address this challenge, we present a framework called ConfVE, which is the first automated
configuration testing framework for ADSes. ConfVE’s design focuses on the emergence of violations through
rerunning scenarios generated by different ADS testing approaches under different configurations, leveraging
9 test oracles to enable previous ADS testing approaches to find more types of violations without modifying
their designs or implementations and employing a novel technique to identify bug-revealing violations and
eliminate duplicate violations. Our evaluation results demonstrate that ConfVE can discover 1,818 unique
violations and reduce 74.19% of duplicate violations.
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1 INTRODUCTION

Autonomous Vehicles (AVs), a.k.a. self-driving cars, are becoming a pervasive and ubiquitous part
of our daily life. More than 50 corporations are actively working on AVs, including large companies
such as Google’s parent company Alphabet, Tesla, Ford, GM, and Toyota [24, 25, 31, 33, 34]. Quite
a few of these companies are already commercially providing AV products running on public roads,
with notable examples of the robo-taxi services from Alphabet’s Waymo and GM [18, 24] and also
millions of Autopilot-equipped Teslas [34]. Experts forecast that AVs will drastically impact society,
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particularly by reducing accidents [42]. However, crashes caused by AVs indicate that achieving
this lofty goal remains an open challenge. Despite the fact that companies such as Tesla [29],
Waymo [31], or Uber [30] have released prototypes of AVs with a high level of autonomy, they
have caused injuries or even fatal accidents to pedestrians. For instance, an AV of Uber killed a
pedestrian in Arizona back in 2018 [26]. AVs with lower levels of autonomy have resulted in more
fatalities in recent years [4, 7–10, 17, 22, 26]. In October 2021, an AV operated by Pony.ai hit a street
sign on a median, i.e., the strip of land between the lanes of opposing traffic on a divided highway,
in Fremont, California, prompting California to suspend the company’s driverless testing permit.
Autonomous driving software (ADS) that operates these AVs are highly configurable systems.

More specifically, we have found open-source versions of high-autonomy (Level 4), production-
gradeADSes (i.e., Apollo [28] andAutoware [13]) have 1,943 and 2,475 runtime configuration options
in configuration files, respectively, resulting in an exponentially large number of configurations
to consider in order to assess and optimize an AV (e.g., to minimize the severity and frequency of
errors). ADS configurations can have substantial effects on ADS behaviors, such as altering the
functionalities (e.g., driving behavior) or non-functional properties (e.g., performance or passenger
comfort) of an ADS. The large number of configuration options of an ADS, along with the dearth of
documentation explaining them, prevents engineers from tuning ADS configurations for their own
custom needs (e.g., to maximize the performance of a particular AV). Compounding this problem, a
recent study of Apollo and Autoware revealed that incorrect configurations cause a large amount
of ADS bugs (27.25%) and account for many bug symptoms (e.g., crashes) [55]. Thus, determining
whether an ADS prevents improper or invalid values from causing the AV to misbehave, which we
refer to as ADS misconfigurations, is a highly challenging and safety-critical task. Although many
approaches aim to test an ADS by generating driving scenarios [54, 59, 60, 66, 68, 79, 80, 87], we
have not found any ADS configuration testing approaches in the existing literature. They have
all focused on improving test generation to augment the safety and security of AVs under default
configurations, ignoring the myriad of available configuration alternatives.

To test ADSes under varying configurations, a testing approach can execute pre-existing driving
scenarios in simulation for every ADS configuration. However, as per discussions among ADS
developers and contributors, there are practical challenges associated with speeding up simulations,
such as potential inaccuracies or oscillating controls [35]. For this reason, executing driving scenar-
ios is expensive for an ADS since scenario execution time is supposed to be equivalent to the time
required to test the scenario in the physical world to obtain realistic simulation results. For example,
a driving scenario that takes 30 seconds in the physical world still takes 30 seconds in simulation.
Scenario re-execution per configuration and the thousands of configuration options to consider
make ADS configuration testing practically impossible to conduct exhaustively. To address this
combinatorial problem of testing ADS configurations and re-executing driving scenarios, such test-
ing must minimize the time spent on rerunning scenarios for each alternative configuration tested.
To that end, it is particularly critical to ensure that generating such configurations (1) prevents
the identification of one failure from masking other failures, which we refer to as failure masking,
and (2) minimizes the identification of duplicate failures. To prevent masking failures in testing
ADS configurations, a testing approach can significantly benefit from determining the ranges of
configuration values likely to exhibit a failure. Unfortunately, the valid ranges for options are
undocumented and, often, may not be handled by an ADS under test. To minimize the identification
of duplicate failures in ADS configuration testing, a testing approach must be able to find unique
failures that emerge during testing, which we refer to as emerged failures.
To overcome the aforementioned challenges, we introduce ConfVE (Configuration Violation

Emerger), a novel framework for ADS configuration testing that leverages a genetic algorithm to
produce alternative ADS configurations in a manner that reduces the large configuration space to
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identify configuration options and values that can lead to the discovery of bugs not identifiable
using the ADS’ default configuration and, thus, may not be detected until engineers customize the
ADS (e.g., for a particular AV or when customizing the ADS for operation in the physical world).
ConfVE could help developers to identify optimal configurations, fix problematic ones, and analyze
specific configuration ranges and combinations. For example, by narrowing down the valid range
for each option according to the testing results, such a range can help users tailor their needs while
avoiding system failures. The main contributions of this work are as follows:
• We propose ConfVE, the first configuration testing approach in the ADS domain, which serves as
a testing framework that utilizes scenarios from pre-existing ADS scenario-generation techniques
and a genetic algorithm to produce alternative configurations to identify emerged failures in
an ADS by preventing the masking of failures and maximizing the possibility of producing
bug-revealing violations.

• We design 3 novel module-level oracles that detect bug-revealing violations in ADS scenarios
that occur frequently in our ADS configuration-testing experiments.

• We introduce a duplicate elimination process to minimize duplicate failure generation and
identify emerged failures, which works by checking the similarity of traffic violations using
an unsupervised clustering technique and representing those violations as the key features of
driving scenarios with respect to each different violation type.

• We evaluate ConfVE on two open-source versions of production-grade ADSes and discovered
1,818 unique violations from 9 violation types.

2 BACKGROUND

2.1 Autonomous Driving Software

An ADS aims to achieve high automation levels for vehicles to automatically run on roads. The
autonomy levels for self-driving cars depend on various features, including adaptive navigation
control, environmental detection, and other driver assistance systems. The Society of Automotive
Engineers (SAE) defines six levels of autonomous driving from Level 0, with no assistance systems,
to Level 5, which represents fully autonomous driving [74]. An ADS is used to achieve high
automation (Level 4) or full automation (Level 5). Baidu Apollo [28] and Autoware [13] achieve high
automation, specifically, Level 4 [23], which means they are capable of automatically controlling the
vehicle in most potential circumstances and performing all types of driving tasks in different traffic
scenarios and is capable of handling the majority of driving situations without any input from a
human driver, leaving a limited number of cases where a human driver may need to intervene. An
ADS is a large software system consisting of different modules with varying functionalities: HD

Map includes lane geometries and locations of traffic control devices, which may be used by other
modules; Routing generates high-level navigation information based on routing requests and
tells the autonomous vehicle which routes to take to reach its destination; Localization provides
location, heading, velocity, and acceleration information of the AV; Perception identifies the
physical world surrounding the self-driving car by integrating multiple sensors (e.g., camera, radar,
and LiDAR) to recognize obstacles; Prediction receives the obstacle information including position,
velocity, and acceleration detected by Perception and predicts the future motion of the obstacles;
Planning makes decisions for the autonomous vehicle to execute, such as cruising or stopping.
2.2 Scenario-generation Approaches

State-of-the-art scenario-generation approaches [59, 60, 66, 68, 87] focus on generating scenarios
that can expose ADSes to various violations. These approaches initialize the ADS at a location on the
map and send the destination location to the ADS so that it can plan to complete its task; in addition,
such testing approaches also manipulate maneuvers of the obstacles so that complex scenarios
involving interactions between the ADS and other road traffic participants can be generated. AV-
Fuzzer [66] and AutoFuzz [87] use a number of manually specified variables to represent obstacle
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positions as well as the initial and final location of the ADS, resulting in generating scenarios
where the AV always starts at the same location and drives toward the same destination along with
similar obstacles across different scenarios. The required manual specification of these approaches
limits the diversity of the scenarios, inspiring fully automated approaches (e.g., scenoRITA [59],
DoppelTest [60], DeepCollision [68]). All these aforementioned approaches focus on generating
scenarios only under the default configuration but not alternative configurations that may trigger
violations or bugs.
2.3 Configuration Testing

Existing configuration testing techniques build upon regression testing and can handle a number
of configurable options ranging from tens to thousands [57, 84, 85]. Even the state-of-the-art robotics
debugging technique, Swarmbug [62], which conducts experiments on 4 Swarm algorithms, focuses
on 6-14 configuration variables, which is much smaller than the 1,943 runtime configuration options
in Apollo. Swarmbug takes 25.2 (for Adaptive Swarm), 2.8 (for Swarmlab), 0.4 (for Fly-by-logic),
and 0.3 (for Howard’s) hours to run 100 tests for this scale of configurable systems under known
ranges for each option. Unlike traditional configuration testing techniques that focus on software
systems where a result of a test case can be obtained instantaneously, ADS test cases usually require
executing the simulation of vehicle driving scenarios in real-time (e.g., a single test case can take
30 to 60 seconds).
A large number of options in a software system would result in the problem of combinatorial

explosion for all possible configurations because every test would ideally be rerun for every con-
figuration change. Even rerunning or recompiling the system for every configuration change to
take effect incurs significant time costs. Furthermore, virtual scenario-based ADS testing is already
highly expensive because simulations are running in real-time (e.g., 30 minutes of simulation
testing is equivalent to 30 minutes of testing in the physical world). Therefore, we cannot test all
configuration combinations. For virtual testing of ADS, we leverage the insight that we do not need
to fully run every module if testing is not intended to be end-to-end. For instance, prior works
[59, 60] replace the perception module with ground truth obstacle information to focus testing on
the routing, prediction, and planning modules. This can reduce the need to test all 1,943 or 2,475
configuration options in Apollo or Autoware by focusing on Planning or core modules of a Level-4
ADS, such as Routing and Prediction, because they are the most bug-ridden [55].
2.4 Motivating Example

Prior work [55] conducted a comprehensive study of ADS bugs in 2 open-source ADS repositories
(i.e., Apollo [28] and Autoware [13]) and discovered incorrect configurations are the root cause of
27.25% of bugs. Incorrect configuration is also responsible for 97.5% of build failures that may prevent
the compilation or building of the ADS. Although previous ADS testing approaches combined have
a diverse set of oracles that can detect safety, motion sickness, and traffic law violations, none of
them considered different configurations of the ADS and only used the default configuration.
As an example, consider the following bug-revealing violation found by ConfVE but not by

previous approaches: In the context of trajectory optimization in the planning module of Baidu
Apollo, the accel_penalty parameter plays a vital role in ensuring smooth and comfortable driving
experiences for passengers. Engineers adjust this parameter to strike a balance between comfort
and efficiency based on the specific driving scenario. In a scenario where an AV needs to change
lanes on a highway to avoid an obstacle, setting the accel_penalty configuration option too high
may result in Planning generating trajectories with overly gentle acceleration profiles, leading to
slow and conservative driving. This behavior can increase travel time and reduce efficiency, while
also posing safety risks if the vehicle is driving too slowly relative to other traffic. By setting the
accel_penalty from 1.0 to a large value (e.g., 8988.8), the AV runs at an extremely slow speed
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when changing lanes, resulting in an unsafe lane-change violation, i.e., the AV spends an excessive
amount of time driving on lane boundaries.
3 SPECIFICATION OF STATE SPACE

To clarify configuration testing and how it differs from scenario-generation approaches, we
present a formal specification of the state space in the form of scenarios. ConfVE uses this formal
specification of the state space, along with the search operators in the genetic algorithm, to generate
configurations for testing scenarios from previous scenario-generation approaches.
Definition 1. A Scenario 𝑆 = ⟨𝐸,𝑉 , 𝐷,O⟩ is a tuple where:
• 𝐸 represents the ego car (i.e., the autonomous vehicle).
• 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣 |𝑉 | } is a set of violations occurring in the scenario. Each violation 𝑣 ∈ 𝑉 has a
violation type 𝑣 .𝑡𝑦𝑝𝑒 and 𝑉 .𝑡𝑦𝑝𝑒𝑠 = {𝑣 .𝑡𝑦𝑝𝑒 | 𝑣 ∈ 𝑉 } is the set of all violation types in 𝑉 .

• 𝐷 = {𝑑1, 𝑑2, · · · , 𝑑 |𝐷 | } is a set of planning decisions produced by the Planning module.
• O is a finite, non-empty set of obstacles (i.e. non-player characters).
Definition 2. A Test Case 𝑇𝐶 = ⟨S,𝐶,𝑂𝑟𝑎𝑐𝑙𝑒𝑠⟩ is a tuple where:
• S = {𝑆1, 𝑆2, · · · , 𝑆𝑘 } is a set of 𝑘 scenarios to be tested.
• 𝐶 = ⟨𝑜1, 𝑜2, · · · , 𝑜 |𝐶 |⟩ is a tuple of configuration options representing a configuration, where
𝑜𝑖 ∈ 𝐶 is a configuration option. We use 𝐶𝑑 to denote the default configuration of the ADS (i.e.,
the set of values for each configuration option selected by developers for the ADS release under
test) and 𝑆𝑑 to represent a scenario tested under the default configuration.

• 𝑂𝑟𝑎𝑐𝑙𝑒𝑠 is a finite, non-empty set of ADS oracles that are used to measure various violations that
occurred in the scenario.

4 APPROACH
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Fig. 1. Overview of ConfVE

Figure 1 shows an overview of
ConfVE, a novel ADS configura-
tion testing framework. The main
goal of ConfVE is to test ADS un-
der different driving scenarios with
different configurations to expose
ADS failures and violations. Con-
fVE achieves this goal as follows:
Scenario Generator reuses exist-

ing ADS scenario-generation ap-
proaches to produce test cases, i.e.,
initial scenarios for ConfVE, each of which contains the information necessary to reproduce a
scenario. These scenarios are then sorted based on the criteria we discuss in Section 4.1.3, and
used as input to ConfVE based on the ordering. Configurator analyzes the target configuration file
in terms of the option types and uses a genetic algorithm to produce alternative configurations.
The genetic algorithm evolves the ADS configurations with the aim of finding configurations that
trigger emerged violations, i.e., violations that can be found using an alternative configuration but
cannot be found using the default configuration of an ADS. Given an alternative configuration 𝐶𝑎

generated by Configurator, Scenario Player tests scenarios by reproducing them using the routing
request, obstacle perception, and traffic signal perception under 𝐶𝑎 . Duplicate Violation Elimina-
tor evaluates scenarios under alternative configurations and checks the violations arising from
each configuration by comparing them with existing violations to determine if they are emerged
violations. For each generation, Duplicate Violation Eliminator inspects all accumulated emerged
violations to eliminate any duplicate violations, resulting in a set of unique, emerged violations. A
dynamic Range Analyzer determines value ranges for configuration options to prevent the masking
of violations from recurring and reduce duplicate violations.
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ConfVE incorporates unique procedures like duplicate elimination among driving scenarios
and range analysis, especially concerning options with large potential ranges, e.g., floating-point
features, which are common in ADSes and cyber-physical systems but occur less often in configura-
tion systems for other domains. These challenges together exacerbate the need to test configuration
options by making testing time longer and the combinatorial search space larger than traditional
systems from non-ADS or non-cyber-physical domains. Unlike pre-existing techniques described in
Section 7, there is a severe lack of known configuration option ranges to use for testing, requiring
a dynamic range analysis like that offered by our approach. We further use domain-specific fitness,
such as the score functions of planning decisions and the sinuosity of trajectories, to guide the
genetic algorithm in selecting offspring individuals for better alternative configurations.
4.1 Scenario Generator

The objective of ConfVE is to perform comprehensive testing of an ADS across a variety of
configurations. Scenario Generator serves as a pre-processing step that generates diverse initial
scenarios utilizing existing scenario-generation approaches before we start the configuration testing.
To prevent redundant testing of the same scenarios across multiple configurations, which tend to
produce similar violations, a scenario ranking mechanism has been implemented. This mechanism
prioritizes scenarios based on their potential to reveal new or unique violations and selects them
for testing in a specific order.
4.1.1 Initial Scenarios Generation: ADS scenario-generation approaches aim to create realistic
and effective driving scenarios that expose the ADS to safety and comfort violations [59, 60, 66, 68,
87]. These scenarios typically involve (1) routing requests sent to the ADS, which can be used to
extract the initial location of the AV and its destination; (2) obstacle trajectories, which can be used
to extract the location, speed, and heading of every obstacle at every timestamp during a scenario;
and (3) traffic signal status, which is used to indicate right-of-way status. These approaches use a
genetic algorithm to maximize a defined set of fitness functions (representing safety and comfort
violations) to guide the search for problematic scenarios that are likely to trigger violations.

Different ADS testing techniques differ in the ability of the ego car to handle different running
conditions in terms of the size of maps and the complexity and diversity of scenarios such as obstacle
number, obstacle types, and whether the obstacle runs with constant or mutable speed [44, 45, 54,
59, 60, 65, 66, 68, 72, 87]. ConfVE uses different scenario-generation techniques under the default
configuration to generate initial scenarios. By analyzing the scenario record file, ConfVE extracts
the scenario setup (e.g., perception of obstacles, routing request, module configurations, etc.), uses
the extracted information as input, and reproduces the scenario under different configurations to
determine how configuration changes influence the ego car and the ADS that operates it to identify
bug-revealing violations or other types of bugs (e.g., ADS module crashes).
4.1.2 ADS Oracles: Previous work considers a limited number of test oracles, mainly consisting
of one or only a few test oracles (e.g., less than 5) per work [38, 39, 44, 54, 59–61, 66, 87]. The
limited use of test oracles found in such techniques ignores important safety and comfort issues
(e.g., driving between lanes for too long or causing system failures) and provides significantly less
insight into the testing of production-grade ADSes. Unlike previous work, ConfVE considers 9 test
oracles, 6 of which are based on grading metrics defined by Apollo’s developers [3].

We adopt the following 6 scenario-level oracle types from previous work:
• Collision [3] oracle has been defined and used by previous test generation approaches to detect
collisions between the AV and other road traffic participants [59, 60, 66, 87]. We apply a bug-
revealing checking mechanism to filter out false positives for which an AV is not responsible.
Collision violations are safety-critical and can lead directly to severe injuries or loss of life.

• Comfort oracles focus on whether the AV accelerates excessively, i.e., Fast Acceleration [3], or
decelerates too fast, i.e., Hard Braking [3]. An acceleration (or deceleration) is excessive if it
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exceeds a maximum allowed value of 4𝑚/𝑠2, which is a threshold set by Apollo developers and
used in prior research [40, 59]. These (de)acceleration violations often cause motion sickness [81],
which affects about one-third of the population [36], especially women [56], who are historically
underrepresented in healthcare research [70] and technology design [73].

• Speeding [3] oracle detects whether the AV is traveling at a speed higher than legally permitted
in a given lane. The most common dangers caused by speeding include loss of control as a driver,
rollover accidents, and higher severity of crashes [20].

• Unsafe Lane-change [59] oracle detects violations in which the AV spends an extended period of
time driving on lane boundaries—which may lead to traffic congestion, traffic delays, road rage
incidents, or collisions [14, 15, 49].

• Lane-change in Junction [3] oracle focuses on traffic law violations in which the AV attempts to
change lanes in a junction. This violation might cause dangers such as collisions and road rage
incidents [11, 49, 76].

Through experimentation and manual analysis of the ADS under test, we further define 3 novel
module-level oracles that aim to detect system failures and invalid configurations:
• A Module Delay oracle aims to detect cases in which certain modules are producing output at a
lower-than-usual frequency, which makes the AV fail to respond to a decision. For example, if
the Control module delays responding for more than two seconds, a collision might occur if an
obstacle is in front of the AV at high speed.

• A Module Malfunction oracle detects scenarios in which an ADS module fails to be initialized
and launched. For example, the Planning module depends on the Routing module in order to
make decisions to operate the AV. Failure to initialize either Routing or Planning causes the
AV to freeze at its location, making the AV unable to reach its destination or cause a traffic
jam if the AV is freezing at a junction. This oracle covers all engaged modules in ADS virtual
testing and is a generalization of the Routing test oracle in Apollo Dreamland [3], which is a
web-based simulation platform maintained by Apollo. The Pony.ai incident [21], due to module
malfunction or delay, led to the system’s shutdown and subsequently caused California to suspend
its driverless testing permit.

• A Vehicle Paralysis oracle detects scenarios in which a module is correctly initialized but is produc-
ing output that differs from its expected behavior. For example, Planning is expected to produce
planning decisions after Routing has determined a trajectory leading to the AV’s destination;
however, during experimentation, we observed Planning may produce empty messages while a
valid input to Planning is provided. This oracle would also cause the AV to freeze at its location.
However, the module is correctly initialized but not running correctly in Vehicle Paralysis, unlike
the module that is not successfully initialized in Module Malfunction.
The module oracles are crucial for detecting crashes and system-level bugs, which is a significant

advancement from previous oracles that were primarily focused on driving functionality bugs.
These new oracles are particularly relevant in configuration testing, as in our experiments, only
configuration-related bugs can trigger specific failures. Although these module-level oracles focus
on system states and differ from prior work that mainly checks for driving behavior violations,
symptoms of these bugs are still observable during simulation.

Our oracles further aim to account for whether a violation reveals a bug. For all violation types
except collision, a violation instance is bug-revealing because only the ego car is involved in these
violations, making it always responsible for the violation. For collision violations, we must carefully
design a collision oracle to maximize its ability to detect bug-revealing collisions. Specifically, side
and rear-end collisions involving the vehicle are highly unlikely to be the fault of the ego car. If the
ego car is hit from the back or its side, the responsibility likely lies with the obstacle, making the
associated collision not bug-revealing. For example, if an obstacle initiates a lane change maneuver
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without considering the right of way of other road traffic participants and collides into the AV from
the side, the obstacle will be determined as responsible if it has not completed the lane change. As a
result, when a collision violation occurs, ConfVE only considers such violations when the collision
occurs in front of the ego car as it moves with non-zero velocity by measuring the locations and
headings of both the ego car and the obstacle.
4.1.3 Ranking Initial Scenarios: Although ConfVE may obtain numerous scenarios from
different ADS scenario-generation approaches, the computational and time expense of executing
and simulating the selected scenarios under different configurations prevents ConfVE from re-
executing all scenarios generated by an ADS scenario-generation approach. As a result, we need
a mechanism to select diverse scenarios that contain different AV running conditions and decide
which scenarios should be tested first.

A test case in our configuration testing contains 𝑘 scenarios with an alternative configuration. We
select 𝑘 scenarios from all initially generated scenarios based on the diversity ranking of scenarios
(𝑅𝑎𝑛𝑘𝑖𝑛𝑔S𝑖𝑛𝑖𝑡 ) in terms of violation rarity (𝑠𝑐𝑜𝑟𝑒𝑆.𝑉 ), the number of planning decisions (𝑠𝑐𝑜𝑟𝑒𝑆.𝐷 ),
and sinuosity (i.e., curvature or bending) of planning routes (𝑠𝑐𝑜𝑟𝑒𝑆.𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦):

𝑅𝑎𝑛𝑘𝑖𝑛𝑔S𝑖𝑛𝑖𝑡 (𝑠𝑐𝑜𝑟𝑒𝑆.𝑉 , 𝑠𝑐𝑜𝑟𝑒𝑆.𝐷 , 𝑠𝑐𝑜𝑟𝑒𝑆.𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦) (1)
𝑅𝑎𝑛𝑘𝑖𝑛𝑔S𝑖𝑛𝑖𝑡 uses Non-Dominated Sorting [53] to rank initial scenarios based on their violation
rarity, the number of planning decisions, and sinuosity of planning routes. Non-Dominated Sorting
is a technique used in multi-objective optimization to deal with multiple conflicting objectives,
which helps identify Pareto-optimal scenarios by classifying them into different levels of non-
dominance. This ensures that the selected scenarios are diverse and representative, covering a wide
range of trade-offs among the three criteria.
The intuition of the 𝑠𝑐𝑜𝑟𝑒𝑆.𝑉 ranking scheme is to assign different weights for each test oracle

so that a scenario with rarer violations is more likely to be selected compared to a scenario with
violations that appear in many other scenarios. More formally,

𝑠𝑐𝑜𝑟𝑒𝑆.𝑉 =
∑︁

𝑣𝑡 ∈𝑆.𝑉 .𝑡𝑦𝑝𝑒𝑠

𝑊𝑣𝑡 ∗ |𝑆.𝑉𝑣𝑡 | (2)

𝑊𝑣𝑡 = 1 −
|S𝑣𝑡𝑖𝑛𝑖𝑡 |
|S𝑖𝑛𝑖𝑡 |

(3)

𝑆.𝑉𝑣𝑡 = {𝑣 ∈ 𝑆.𝑉 | 𝑣 .𝑡𝑦𝑝𝑒 = 𝑣𝑡} (4)
S𝑣𝑡𝑖𝑛𝑖𝑡 = {𝑆 ∈ S𝑖𝑛𝑖𝑡 | 𝑣𝑡 ∈ 𝑆.𝑉 .𝑡𝑦𝑝𝑒𝑠} (5)

𝑊𝑣𝑡 is the rarity weight of a violation type in S𝑖𝑛𝑖𝑡 , 𝑆.𝑉𝑣𝑡 is the set of violations of type 𝑣𝑡 in scenario
𝑆 , S𝑖𝑛𝑖𝑡 is the set of all initial scenarios, S𝑣𝑡𝑖𝑛𝑖𝑡 is the set of scenarios containing the violation type 𝑣𝑡
in S𝑖𝑛𝑖𝑡 , and 𝑆.𝑉 .𝑡𝑦𝑝𝑒𝑠 is the set of violation types in a scenario.

While scenarios with violations can be compared using the rarity of violations, those that do not
have any violations are harder to compare. Instead of only focusing on the outcome of the scenario,
we leverage the decisions that the ADS makes during a scenario to evaluate the complexity of
the scenario. The intuition is that the more unique decisions the ADS makes (e.g., yield, overtake,
stop, etc.), the more complex the scenario is. Hence, the decision ranking scheme is defined as
𝑠𝑐𝑜𝑟𝑒𝑆.𝐷 = |{𝑑 ∈ 𝑆.𝐷}|.

An additional feature that we use for determining whether a scenario is more interesting than
another is the sinuosity of the path traversed by the AV. Sinuosity is represented as the ratio of
the curvilinear length and the Euclidean distance between the endpoints of the path traversed.
The ratio is exactly 1.0 if the AV traverses on a straight line. The intuition behind this feature is
that scenarios in which the AV made complex maneuvers (e.g., overtaking an obstacle, turning
at junctions) are more interesting than ones only involving AV traversing on a straight line. The
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sinuosity score is defined as

𝑠𝑐𝑜𝑟𝑒𝑆.𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 =
disttraveled (𝐸)

displacement (𝐸) (6)

disttraveled (𝐸) is the total length of the path traversed by the ego car 𝐸 and displacement (𝐸) is the
distance between the initial and final location of 𝐸 (i.e., straight-line distance) in a scenario.

Through our experiments, we find that constantly testing configurations in fixed initial scenarios
tend to produce similar emerged violations. To address this challenge, a scenario substitution
mechanism is introduced to change the tested scenarios by replacing initial scenarios if the emerged
violations are detected in them using an alternative configuration. More specifically, as the genetic
algorithm executes, when ConfVE finds an emerged violation in a scenario, it will replace such
a scenario with another one from initially generated scenarios based on the ranking of diversity
score (i.e., Equation 1) at the end of a generation.
4.2 Configurator

Configurator manages the generation of alternative configurations in the genetic algorithm.
Configuration Parser parses configuration files of the ADS, extracting options, and analyzing their
types so that appropriate mutation operators can be applied to individual configuration options.
Configurator then applies the genetic algorithm and its associated mutation operators to different
types of options and initializes the ADS under the alternative configuration.
4.2.1 Configuration Parser: A configuration file under test needs to be analyzed before the
configuration testing. Configuration Parser identifies options using regular expression and infers
the option type and potential range for each option, which would be used in the mutation process
of the genetic algorithm. For example, if the type of the default value of an option is floating-point,
Configuration Parser produces a large range of floating-point values it can take on. From experiments,
we found assigning an exceedingly large value generally would cause module violations. However,
we do not expect emerged violations to always be these types, which is against one of ConfVE’s
objectives, i.e., to trigger more types of violations. Since permissible values for an ADS configuration
option are seldom specified or documented [43], we also need a way to narrow down the range for
options, which we discuss in Section 4.4.
4.2.2 Representation: Figure 2 illustrates the genetic representation of an individual produced by
ConfVE. An individual (i.e., chromosome) represents a configuration 𝐶 , which, in turn, represents
a single test. A test suite in ConfVE is a set of test cases that contain different alternative configu-
rations and the same set of scenarios. An individual is represented by a sequence of genes, each
corresponding to a configuration option 𝑜 . When initializing an individual, all genes are assigned
their default values. Each gene can change its value through mutation, but it still has to adhere to
the ranges determined by Configuration Parser and Range Analyzer.

Configuration 1 Configuration 2 Configuration m…Configurations
(Individuals)

Options
(Genes)

accel_penalty decel_penalty speed_weight jerk_weight lowest_speed… …

Fig. 2. Genetic Representation of a Configuration

4.2.3 Fitness Evaluation: In each
generation, ConfVE evaluates indi-
viduals by their fitness with respect
to multiple search objectives and de-
termines which individuals should
be selected to pass on their genes.
ConfVE determines the fitness of
an individual by evaluating the diversity and number of emerged violations and planning
decisions. This is measured by calculating an individual 𝑖’s fitness using a function 𝐹 (𝑖) =(
𝑓𝑐𝑜𝑢𝑛𝑡 (𝑖), 𝑓𝑡𝑦𝑝𝑒 (𝑖), 𝑠𝑐𝑜𝑟𝑒𝐷 (𝑖), 𝑠𝑐𝑜𝑟𝑒𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 (𝑖)

)
, where 𝑓𝑐𝑜𝑢𝑛𝑡 (𝑖) counts the total number of emerged

violations within a scenario; 𝑓𝑡𝑦𝑝𝑒 (𝑖) refers to the number of emerged violation types; 𝑠𝑐𝑜𝑟𝑒𝐷 (𝑖) is a
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function that computes the decision score, 𝑠𝑐𝑜𝑟𝑒𝑆.𝐷 ; and 𝑠𝑐𝑜𝑟𝑒𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 (𝑖) is a function that computes
the sinuosity of planning routes 𝑠𝑐𝑜𝑟𝑒𝑆.𝑠𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 for a scenario 𝑆 produced with configuration 𝑖 .
4.2.4 Search Operators: In every iteration of the genetic algorithm, ConfVE runs the ADS
in the simulation environment and tests scenarios under the configuration. Based on the testing
results of this generation, ConfVE updates the configurations to be tested in the next generation.
Alternative configurations are generated by applying the mutation and crossover to the config-
uration individuals of the current generation. Configurator aims to focus on four objectives: (1)
the number of emerged violations obtained from configuration testing, (2) the number of emerged
violation types, (3) the number of planning decisions, and (4) the complexity of the planning route.

Table 1. Mutation Operators for Different Option Types,

and Examples of Option Values Before and After Mutation

Option

Type

Mutation Operator Before After

Integer Generate Value 5 10
Digit type change 5 6.5

Float Generate Value 15.70 30.42
Digit type change 15.70 15

E-Number Generate Value 4e7 4e5
Boolean Negation true/yes/max false/no/min

String

Substitute "aa/bb" "aa/cb"
Add "aa/bb" "aa/bcb"
Delete "aa/bb" "aabb"
Cut "aa/bb" "aa"

Case Conversion AABB aabb
Disorder AABB BBAA
Repeat AABB AABBAABB

Mutation. ConfVE uses a single-point mu-
tation strategy by applying one of the mu-
tation operators shown in Table 1 to a gene
from an individual. The mutation operators
differ by option type, covering all standard
and appropriate operators that could be ap-
plied to ADS configuration options. For ex-
ample, options of numerical types can be
mutated by applying the digit type chang-
ing or randomly generating a value within
the range; options of string type can be mu-
tated by following the mutation operators
in state-of-the-art approaches of misconfig-
uration injection testing [67, 83, 86].

Multiple mutations can lead to failures, which our approach supports by incrementally mutating
configuration options through its single-point mutation. By mutating a single configuration option
at a time, our approach enables effective tracking of option tuning, facilitates range analysis, and
allows multiple mutations to a single individual. Note that our approach focuses on identifying
potential problematic configurations and is not a root-cause analysis or fault-localization approach.
Considering the time-consuming nature of scenario testing in the ADS domain, our choice of a
single-point mutation strategy makes the relationship between an emerged violation and a tuned
option relatively explicit and balances the trade-off between individual diversity and the difficulty
of tracking the latest option tuning. If more than one option is tuned for a mutation, it is relatively
difficult to judge which option causes a violation because, as the number of simultaneously mutated
options increases, the number of required evaluations grows exponentially. For instance, consider a
scenario where two options are mutated simultaneously, and a violation emerges. To determine the
root cause, it would be necessary to test both options individually and in combination, resulting in
four potential evaluations.
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Fig. 3. An Example of a Crossover

Crossover. This operator selects two in-
dividuals and creates offspring by mixing
the genetic makeup of their parents. Con-
fVE uses a commonly used single-point
crossover strategy, where the crossover
point is picked randomly from the mating
individuals (i.e., parents), and the genes
behind the point are swapped. Figure 3 il-
lustrates the application of the crossover
operator on two sample individuals.
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Selection. Certain individuals can trigger module violations (e.g., module malfunction) and cause
the ADS to freeze at its initial location. Once a module violation occurs, tuning other options may
result in the same module violation that is likely triggered by an option mutated in the previous
generation as opposed to a newly mutated option in the current generation. We refer to this
phenomenon as violation masking, i.e., a module violation masks the effect of tuning other options
and impairs the effectiveness of the optimization algorithm. ConfVE will not select individuals
that are likely to cause violation masking.

ConfVE uses theNon-dominated SortingGeneticAlgorithm selection (NSGA-II) for breeding the
next generation [48]. NSGA-II is an effective algorithm used for solving multi-objective optimization
problems (i.e., problems with multiple conflicting fitness functions) and further aims to maintain
the diversity of individuals. NSGA-II starts by sorting a set of individuals based on a non-dominated
order of fitness. In a multi-objective problem, an individual 𝑖1 is said to dominate another individual
𝑖2 if (1) 𝑖1 is no worse than 𝑖2 for all objective functions (e.g., the number of planning decisions), and
(2) 𝑖1 is strictly better than 𝑖2 in at least one objective. Once the non-dominated sort is complete, a
crowding distance is assigned to every individual in a given scenario. A crowding distance measures
how close individuals are to each other; a large average crowding distance will result in better
diversity in the population. Once the crowding distance is assigned, parent individuals and offspring
are selected to produce offspring based on the fitness and crowding distance; an individual is selected
if its order rank of fitness is less than the other, or if the crowding distance is greater than the other.
Only the best 𝑁𝑝𝑜𝑝 individuals are selected, where 𝑁𝑝𝑜𝑝 is the population size. The intuition behind
using NSGA-II selection is threefold: (1) it uses an elitist principle, i.e., the most elite individuals in
a scenario are given the opportunity to be reproduced so their genes can be passed on to the next
generation; (2) it uses an explicit diversity-preserving mechanism, which maintains the diversity of
driving scenarios in ConfVE; and (3) it emphasizes the non-dominated solutions.
4.3 Duplicate Violation Eliminator

Duplicate Violation Eliminator (DVE) identifies violations arising from rerunning scenarios using
alternative configurations in Scenario Player and filters out duplicate violations, retaining only those
that are unique. ConfVE integrates DVE at two distinct stages of its operation. In the first stage,
ConfVE assesses the uniqueness of violations that manifest in specific scenarios by rerunning these
scenarios under alternative configurations and contrasting the results with those obtained under the
default configuration. Violations that are identified as unique under these new configurations are
designated as emerged violations. As ConfVE progresses, Duplicate Violation Eliminator evaluates
the violations from these alternative configurations in terms of their emergence and their potential
to reveal bugs. In each iteration, emerged violations are aggregated. Notably, configurations that
give rise to these emerged violations are classified as suspicious configurations. These configurations
hold significance as they can be instrumental for range analysis, as referenced in Section 4.4, or
even for software debugging purposes. In the second stage, ConfVE employs DVE to examine the
accumulated emerged violations for duplicates, eliminating them and producing one of ConfVE’s
final outputs, i.e., unique, emerged violations. This stage is crucial because different configurations
could produce the same violation, even for the same scenario.
To distinguish ego behaviors, especially different violations committed by the ego car in a

scenario, recent work proposed clustering-based approaches [46, 59], that leverage a distance-based
metric to determine the similarity between ego behaviors across two distinct scenarios. For ConfVE,
we reused and augmented the duplicate elimination approach in scenoRITA [59], including a set
of general representations of violations and the clustering algorithm, for mitigating the presence
of duplicate violations since scenoRITA focuses more on violations while the other approach
focuses on ego behaviors. Our approach extends beyond this by introducing non-strict and strict
features. Strict features are domain-specific and any difference between two violations immediately
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indicates those violations are different while non-strict features are used to determine violation
similarity in cases where strict features are equal. This dual classification balances adaptability
and specificity, ensuring robustness across varying real-world conditions. We further expanded
the violation representations to include our newly introduced violation types (i.e., Module Delay,
Module Malfunction, Vehicle Paralysis, and Lane-change in Junction) according to the principles
of applicability across ADSes and the minimum involved components of a violation, which were
confirmed by two Apollo contributors. Previous scenario-generation approaches have introduced a
feature representation for violations in virtual driving scenarios [59, 60]. To compare violations,
ConfVE represents them using the features shown in Table 2. These features represent the key
characteristics of violations per type, which we determined by studying each violation type, the
information recorded by anADS, and confirmation fromApollo contributors. For a collision violation,
the Duplicate Violation Eliminator reuses 4 features that are extracted at time 𝑡 , where 𝑡 indicates
the first timestamp at which the violation occurs. These features include the position 𝑝𝐸𝑡 of the
ego car 𝐸 at time 𝑡 ; 𝐸’s speed 𝑠𝐸𝑡 at time 𝑡 ; the position 𝑝𝑂𝑡 of obstacle 𝑂 ; obstacle 𝑂’s speed 𝑠𝑂𝑡 at
collision time 𝑡 . We also add two features ℎ𝐸𝑡 or ℎ𝑂𝑡 , which denote the heading of the ego car or
obstacle, to represent scenario violations more accurately. For the remaining violations, we extract
their respective features. These features include the ego car 𝐸’s location at a violation time 𝑝𝐸𝑡 , and
the speed 𝑠𝐸𝑡 of 𝐸. For speeding, unsafe lane-change, fast acceleration, hard braking, andmodule delay
violations, we also measure the length of time for which it lasts (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) while fast acceleration
and hard braking oracles measure the acceleration value at a violation time (𝑎𝑐𝑐𝑒𝑙/𝑑𝑒𝑐𝑒𝑙 ).

Table 2. Feature Representations of Each Violation Type

Violation Type Non-strict Features Strict Features

Collision {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 , 𝑝𝑂𝑡 , 𝑠𝑂𝑡 , ℎ𝑂𝑡 } −
Fast Acceleration {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑎𝑐𝑐𝑒𝑙 } −
Hard Braking {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑑𝑒𝑐𝑒𝑙 } −
Speeding {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} −

Unsafe Lane-change {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} −
Lane-change in Junction {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 } 𝑖𝑑 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Module Delay {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 , 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} 𝑡𝑦𝑝𝑒𝑚𝑜𝑑𝑢𝑙𝑒

Module Malfunction {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 } 𝑡𝑦𝑝𝑒𝑚𝑜𝑑𝑢𝑙𝑒

Vehicle Paralysis {𝑝𝐸𝑡 , 𝑠𝐸𝑡 , ℎ𝐸𝑡 } 𝑡𝑦𝑝𝑒𝑚𝑜𝑑𝑢𝑙𝑒

While the aforementioned fea-
tures can effectively distinguish vi-
olations detected in prior work,
for module-related violations that
are detected in ConfVE, those fea-
tures cannot correctly determine the
uniqueness of a violation. For exam-
ple, the AV may freeze at the same
position with the same heading due
to module malfunction from 2 different modules. To address this problem, we also use the type
of an ADS module (e.g., Routing, Planning, Prediction, or Localization), denoted by 𝑡𝑦𝑝𝑒𝑚𝑜𝑑𝑢𝑙𝑒 ,
or a junction’s unique identifier, denoted by 𝑖𝑑 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , as strict features, which are features that
cause any two violations to be identified as different, irrespective of other feature values, if such
a feature’s values differ for those two violations. For example, if the type of a module 𝑡𝑦𝑝𝑒𝑚𝑜𝑑𝑢𝑙𝑒

differs for two violation instances of amodule malfunction, then the two instances must be different
since the malfunction occurs in different modules.

Table 3. Example of Duplicate Collision Violations

ID ego location x ego location y ego heading obstacle heading ego speed obstacle speed

Collision-1 559449.716550803 4157214.07281456 -2.44831086142857 -2.42155592419325 40.1479655443566 68.5231404988578
Collision-2 559445.666180909 4157210.72136067 -2.47056667699013 -2.42155667074278 39.7015265216219 68.5231404988578
Collision-3 559264.568996154 4157220.94727521 -1.38245939298376 -1.09947073870517 29.7268322456541 59.1636072973156

As a concrete example of duplicate violations, consider the three collisions with partial features
shown in Table 3. When comparing Collision-1 and Collision-2, these incidents occurred 5.2572
meters apart from each other, the headings of the AVs differ by -4.0060 degrees, and the headings
of the obstacles differ by 0.0001 degrees. These two collisions are considered duplicate collision
violations, while Collision-3 is considered to be different from both Collision-1 and Collision-2 given
it occurred at a place farther away (181.3857m) and the heading of both the AV and obstacle differ
significantly (195.8593 and 237.9755 degrees, respectively). Identifying such duplicates is important
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in configuration testing since we need to distinguish misconfiguration-induced violations from
ones in the original scenario.
Using the features we defined, ConfVE identifies emerged violations by (1) determining if a

violation in an alternative configuration is sufficiently different from one in the default configuration
and (2) addressing the inherent non-determinism of an ADS. Due to the inherent non-determinism,
reproducing default scenarios may yield slight variations, potentially leading to slightly different
violation results for the same scenario. To mitigate this, each initial scenario 𝑆𝑑 is rerun under the
default configuration 𝐶𝑑 10 times to collect all violations (𝑉𝐶𝑑

) arising from 𝐶𝑑 . When ConfVE
produces an alternative configuration 𝐶𝑎 , ConfVE runs each scenario 𝑆 𝑗 using 𝐶𝑎 to find all
violations𝑉𝐶𝑎

arising from𝐶𝑎 . To support diverse and potentially fluctuating scenarios, we employ
a clustering algorithm to accommodate variations in scenarios and violations. ConfVE determines
if a violation 𝑣

𝑗

𝐶𝑎
∈ 𝑉𝐶𝑎

is emergent if (1) the violation type of 𝑣 𝑗
𝐶𝑎

does not exist in 𝑉𝐶𝑑
or (2) the

violation type of 𝑣 𝑗
𝐶𝑎

is in 𝑉𝐶𝑑
.𝑡𝑦𝑝𝑒𝑠 and the similarity between 𝑣

𝑗
𝑐𝑎 and a violation of this type in

𝑉𝐶𝑑
are sufficiently low. For example, if 𝑣𝐶𝑎

is assigned to a cluster with more than one violation in
it, ConfVE considers 𝑣𝐶𝑎

to be sufficiently similar to at least one violation in 𝑉𝑑 . In such a case,
ConfVE does not consider 𝑣𝐶𝑎

an emerged violation. If 𝑣𝐶𝑎
is a singleton cluster, ConfVE considers

𝑣𝐶𝑎
as an emerged violation since it is an outlier that is sufficiently different from any violation

in 𝑉𝑑 . For the clustering itself, we chose DBSCAN [51] (i.e., density-based spatial clustering of
applications with noise), which was used in scenoRITA [59], since it is distance-based and more
suited for spatial data.
4.4 Range Analyzer

From our comprehensive analysis, we observed that program paths of ADS configurations
typically do not impose limitations on the value ranges they can assume, indicating that ADSes
often bypass range checking for configuration options. After checking the source code of the Apollo
planning module in terms of the configuration file, we found only 15 options out of 197 numeric
(i.e., integer, floating-point, and Euler’s number types) options have constraints or bounds that
could be used to infer initial option ranges. However, these initial ranges are somewhat imprecise
and broad (e.g., dense_dimension_s > 1 or sparse_unit_s ≠ 0), requiring further refinement
through dynamic analysis. This lack of range checking by ADS code, combined with a large number
of configurations and unknown valid ranges, poses a significant risk of generating unsupported
configurations, thus leading to intrinsic crashes, errors, or exceptions within the ADS—especially
when it is customized to run on a particular physical AV.

To determine an effective range of values for testing ADS configuration options, ConfVE applies
a range analysis to options that cause violation masking, i.e., when a violation prevents other
likely bug-revealing violations from emerging. From our investigation of ADS configurations,
we find that the types of emerged violations are highly related to the values of mutated options
and that a value outside of a configuration option’s valid range, which is highly unlikely to be
documented, tends to mask other failures that occur in an ADS, creating an undesirable increase
in time spent rerunning scenarios for each alternative configuration. A common example of this
masking phenomenon we have observed is the possibility of an AV freezing at its initial position
due to an invalid option value, thus hindering the occurrence of violations such as speeding, fast
acceleration, and hard braking. This masking effect leads to inefficient utilization of time due to
the generation of repetitive violations. Through our experimentation and observation, we find
that invalid configurations always cause intrinsic crashes, errors, or exceptions that prohibit the
modules from normally launching or running. More specifically, we find all types of failures tend
to be masked by previously identified module failures (i.e., module failures found by the initial
scenarios of a scenario-generation approach or by earlier executions of ConfVE). As an example,
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once a module failure occurs in the same scenario, changing a configuration option’s value to an
invalid range (e.g., one that is not even possible in the physical world) would trigger highly similar
violations (e.g., the vehicle would always fail to start and stop in the same lane).

To overcome failure masking, we leverage the insights that (1) module violations are often
caused by invalid values and (2) the default value is consistently within the valid range to test for
option values that are likely to prevent failure masking. More specifically, given an option with a
range of

[
𝑜lower , 𝑜upper

]
, which can be arbitrarily large or small, and default value 𝑜𝑑 , if ConfVE

produces a value 𝑜 𝑓 , we use the value to update the range of values that the option can take on
in future executions of ConfVE’s genetic algorithm. More specifically, the range for the option
is subsequently truncated to

[
𝑜lower , 𝑜 𝑓

]
if
(
𝑜𝑑 < 𝑜 𝑓

)
or

[
𝑜 𝑓 , 𝑜upper

]
if
(
𝑜𝑑 > 𝑜 𝑓

)
. In cases where a

tested value cannot cause module violations, the range remains unaltered. As a result, the algorithm
tends to reduce the initial large range of values, i.e.,

[
𝑜lower , 𝑜upper

]
, closer to the default value, which

is a value that is unlikely to cause an error. This property of Range Analyzer balances between
obtaining values closer to a likely valid value (i.e., the default value) while starting with a wide
range of values that are likely to be invalid, resulting in the prevention of failure masking and the
emergence of violations or failures likely to occur, which our evaluation will demonstrate.
5 EVALUATION

In order to empirically evaluate ConfVE, and to understand how configurations affect the
scenarios and violations, we investigate the following research questions:
• RQ1: How effective is ConfVE at exposing unique emerged violations?
• RQ2: How effective is ConfVE at finding unique emerged violations?
• RQ3: To what extent are duplicate violations eliminated by ConfVE?
• RQ4: What is the runtime efficiency of ConfVE?
5.1 Experimental Setup

We evaluated ConfVE by executing 124,950 virtual tests for a total of 990 hours on Baidu Apollo
7.0 [28] and Autoware v1.0 [19], which are both open-source versions of production-grade or
near production-grade ADSes. Although Apollo and Autoware have co-existed for several years,
evaluations of prior work [59, 60, 66, 79, 80, 87] were predominantly conducted only on Apollo.
Autoware recently migrated its development and its first official major version (i.e., Autoware
v1.0 [19]) was released on February 1st, 2024. To the best of our knowledge, we are the first to
evaluate an ADS testing approach on Autoware v1.0. We conducted our experiments on four
machines: 2 machines each with 2 AMD EPYC 7551 32-Core Processors (512GB RAM), 2 machines
each with 1 Core i9 16-Core Processor (96GB RAM), running Ubuntu 22.04.

For Apollo, we evaluated ConfVE on four real-world HD Maps located in California, including
three provided as part of Baidu Apollo [28] and one from the simulator LGSVL [75]. Sunnyvale
Loop is a large map consisting of 3,061 lanes, with a total length of 107 km; San Mateo is a medium
map consisting of 1,305 lanes, with a total length of 24 km; San Francisco is another medium map
consisting of 1,524 lanes, with a total length of 109 km; and Borregas Ave at Sunnyvale with 60
lanes and a total length of 3 km. The four maps consist of various types of road curvature (e.g.,
straight, curved, intersections) and different types of lanes (e.g., highways, city roads, bike lanes,
etc.). We selected planning_config.pb.txt as the target configuration file to test the planning module.
This file consists of 18 integer options, 167 floating-point options, 29 Boolean options, 51 string
options, and 12 options containing Euler’s number. We ran 4 scenario-generation approaches to
generate initial scenarios, which are used as input for Scenario Player in ConfVE. ConfVE uses
Apollo’s simulation feature, Sim-Control, to simulate driving scenarios in the configuration testing
process. In this way, we could unify all scenario-generation approaches under the same simulation
environment to control the biases and bugs stemming from the simulators.
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We used different state-of-the-art scenario-generation approaches for ConfVE whose code and
dependencies (e.g., the simulator) are available for Apollo. To date, various scenario-generation
approaches have been proposed and evaluated on an open-source ADS. AV-Fuzzer [66] uses the
state-of-the-art simulator LGSVL [75] and applies a genetic algorithm to generate scenarios in
which other vehicles may perform various actions such as cutting in during a scenario, testing an
ADS’ capability of reacting to those vehicles. AutoFuzz [87] uses the same simulator as AV-Fuzzer
but applies a neural network-guided fuzzing algorithm to generate scenarios using the simulator’s
API, which is provided to configure the virtual environment. scenoRITA [59] does not rely on
using a specific simulator and, therefore, is not limited by the types of obstacles that the simulator
provides to test an ADS. Furthermore, scenoRITA analyzes high-definition maps (HD Maps) so
trajectories of the AV and obstacles are automatically generated instead of manually specified.
DoppelTest [60] is similar to scenoRITA but uses the ADS to model every vehicle in a scenario as
opposed to only a single vehicle. Such a setting guarantees at least one AV is responsible for any
violation occurring. Scenario Generator uses the default recommended settings and supported maps
of these approaches to generate initial scenarios since AV-Fuzzer and AutoFuzz require manually
setting up scenario types, unlike scenoRITA and DoppelTest that automate this by analyzing the
map data, allowing for much more varied, diverse, and flexible maneuvers and scenario types.
Due to ADS scenario-generation approaches [59, 60, 66, 68, 87] being predominantly based on

and implemented for Apollo, migrating tools and re-implementing existing scenario-generation
approaches from Apollo to Autoware requires overcoming challenges such as map transformation,
interface and automation implementations, and the connection between the ADS and simulators.
Considering the lack of available scenario-generation approaches implemented for Autoware, we
choose to use scenarios provided by the Autoware Evaluator [37], which is an official Autoware
Foundation platform that collects datasets and test suites that focus on the Operational Design
Domain (ODD) [47], which specifies the operating conditions under which an ADS can operate
safely, to test Autoware on different scenarios to enhance safety and optimize functionality. We
tested the behavior velocity planner of Autoware, which consists of 5 integer options, 181 floating-
point options, 55 Boolean options, and 4 string options. We evaluated the approach on three HD
Map groups, LEO-VM, which are virtual maps created by the AV company Leo Drive; AWF CICD,
which are HD maps developed by the Autoware Foundation; and HD maps of roads in Taiwan.

ConfVE evolved populations of 20 configurations per generation. We also configured the max-
imum scenario duration to be 30 seconds for Apollo and 60 seconds for Autoware, which were
commonly used settings for scenario-generation approaches [59, 60]. In this research, we selected 10
initial scenarios as test cases to start the configuration testing because it balances the ability to find
emerged bug-revealing violations and the time it takes to run all scenarios for one alternative config-
uration. To enhance the speed of ConfVE, we launched five Docker containers to run configuration
testing simultaneously. Given that there is no configuration testing approach for ADSes, we choose
to compare with the baseline approaches, pairwise testing, which is regarded as an efficient and
intuitive testing and sampling strategy for highly configurable systems [71, 78], and ConfVD [67],
which is a misconfiguration testing approach that utilizes fine-grained constraints of option type
classification. To make it support ADS configuration testing and follow the same evaluation metric,
we integrate pairwise testing and ConfVD into our configuration testing framework as a different
option tuning strategy for Configurator. We implemented a version of ConfVD for Apollo and
Autoware, as no implementation is publicly available, by carefully following the ConfVD paper’s
implementation strategies [67] to accommodate those ADSes, and we make our implementation of
ConfVD available to enable future reusability, replicability, and reproducibility (Section 9). We set
a predefined time budget of 10 hours for each experimental group, i.e., either ConfVE or baseline
approach conducted on a particular HD Map using the initial scenarios from a scenario-generation
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approach. We ran each experimental group three times and calculated the averages after rounding
to integers as testing results to reduce the influence of bias and non-determinism.
5.2 RQ1: Independent Effectiveness

For RQ1, we evaluated ConfVE’s ability to produce unique, emerged violations on different maps
and ADS testing approaches. From Table 4, the experiments conducted in this study involved the
deployment of scenoRITA and DoppelTest techniques across three distinct maps, while AutoFuzz
andAV-Fuzzer approaches were only employed in a singlemap, due to their manual setup preventing
them from being run on other maps. The results obtained from the experiments were organized by
violation type and grouped based on the respective ADS testing techniques employed. Notably,
the study identified the highest number of violations within the same violation oracle and marked
those results in grey, which was highlighted as the most frequent across all groups.

Table 4. ConfVE (CE), Pairwise (Pa.), and ConfVD (CD) in terms of Unique Emerged Violations by Apollo

Violation

Type

scenoRITA DoppelTest AutoFuzz AV-Fuzzer

Borregas Ave San Mateo Sunnyvale Borregas Ave San Mateo Sunnyvale Borregas Ave San Francisco

CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD

Collision 1 0 1 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 1 1 0 1 1 0
Fast Accel. 2 2 3 2 1 1 8 4 1 0 1 1 4 1 1 8 5 3 0 0 0 4 4 1
Hard Brak. 49 25 22 17 16 5 101 35 27 16 12 13 21 10 13 31 26 18 4 3 3 20 11 9
Speeding 0 0 0 98 56 53 62 43 39 16 12 5 18 12 9 16 3 3 13 7 4 0 0 0
Unsafe LC 78 47 30 52 44 24 42 32 23 22 13 7 23 8 16 108 20 9 13 5 9 0 0 0
LC in Junc. 0 0 0 38 31 18 35 30 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delay 12 8 3 5 10 0 6 3 1 5 9 6 2 2 1 19 13 7 0 1 1 30 26 6
Malfunc. 53 56 34 49 66 44 49 63 42 31 33 22 30 29 29 54 52 26 17 17 15 30 33 20
Paralysis 27 30 19 21 14 12 26 36 23 24 26 19 21 25 18 23 32 18 14 11 13 18 17 16

Total 222 168 112 282 238 157 329 246 181 114 106 73 121 89 88 259 151 84 62 45 45 103 92 52
Improv. (%) - 32.14 98.21 - 18.49 79.62 - 33.74 81.77 - 7.55 56.16 - 35.96 37.5 - 71.52 208.33 - 37.78 37.78 - 11.96 98.08

As shown in Table 4, Apollo scenarios from scenoRITA, when used with ConfVE, produce more
unique, emerged violations (222-329) and more violation types (i.e., the only approach that produces
all 9 violation types) than other scenario-generation approaches. DoppelTest, which guarantees
any generated collision is bug-revealing by making all vehicles AVs in a scenario, produces 114-259
unique, emerged violations from 8 violation types when used as input to ConfVE. While scenoRITA
and DoppelTest produce a wide variety of diverse violations, AutoFuzz and AV-Fuzzer, when used
with ConfVE, produce significantly fewer violations and violation types: AutoFuzz only produced
62 violations from 7 violation types; AV-Fuzzer only detected 103 violations from 6 violation types.

Table 5. ConfVE (CE), Pairwise (Pa.), andConfVD (CD)

in terms of Unique Emerged Violations in Autoware

Violation

Type

Autoware Evaluator

LEO-VM AWF CICD Taiwan

CE Pa. CD CE Pa. CD CE Pa. CD

Collision 2 3 4 10 5 4 2 1 2

Fast Accel. 2 1 0 9 5 8 0 0 0
Hard Brak. 9 6 5 106 77 91 6 3 5
Speeding 0 0 0 0 0 0 0 0 0
Unsafe LC 22 20 22 44 44 52 11 5 13

LC in Junc. 0 0 0 17 15 15 0 0 0
Delay 11 10 7 3 5 3 2 4 1

Malfunc. 29 23 25 14 33 24 19 23 16
Paralysis 1 1 2 1 1 2 6 7 3

Total 76 64 65 204 185 199 46 43 40
Improv. (%) - 18.75 16.92 - 10.27 2.51 - 6.98 15.0

We found that for each scenario-generation
approach, the large map Sunnyvale Loop has
more complex road conditions, and produces
more unique, emerged violations than medium
or small maps. The greatest number of unique,
emerged violations among the three maps was
recorded on Sunnyvale Loop, with scenoRITA
and DoppelTest generating 329 and 259 viola-
tions, respectively.
The bug-revealing checking mechanism of

ConfVE identified 196 false positives out of 278
collision violations, which means about 71.79%
of collision violations are filtered out by bug-
revealing checking. The amount of collision violations is relatively smaller than other violation types
because collision violations are more dependent on input scenarios. For example, in some initial
scenarios, the ego car cannot encounter obstacles throughout the entire process. For Autoware,
as shown in Table 5, 8 violation types are detected except Speeding, which indicates Autoware’s
implementation of speed controlling is less likely to violate speed limits on given HD maps.
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Finding 1: ConfVE can produce a wide variety of unique, emerged violations (46-329) for all
scenario-generation approaches and maps, demonstrating its ability to identify such violations
irrespective of a particular scenario-generation approach and across two ADSes.

5.3 RQ2: Comparative Effectiveness

RQ2 aims to compare the number of unique, emerged violations discovered by ConfVE with
that of the baseline approaches, i.e., pairwise testing and ConfVD, by setting a predefined timeout
(i.e, 10 hours) with a goal of finding emerged violations within a time budget. Table 4 shows the
total number of unique, emerged violations discovered by ConfVE and the baseline approach for
each scenario-generation approach. The approach that generates more unique, emerged violations
than the others on the same map is bolded. ConfVE demonstrated superior performance compared
to pairwise testing and ConfVD, achieving an overall improvement of 28.03% and 67.80% in Apollo,
respectively. For example, it yields improvements of 27.76%, 42.77%, 37.78%, and 11.96% over pairwise
testing in the scenoRITA, DoppelTest, AutoFuzz, and AV-Fuzzer scenarios, respectively. ConfVE
also works better on larger maps than the baseline while the testing result in of DoppelTest on
Sunnyvale Loop has the highest improvement of 71.52% than the pairwise testing and 208.33% than
ConfVD. For Autoware, ConfVE achieves overall improvements of 10.14% and 7.24% than pairwise
and ConfVD, respectively, which are significantly less than those in Apollo.

We manually inspected and analyzed some scenarios generated by each of the testing approaches
to get an insight as to whyConfVE’s performance varies. First,ConfVE is optimized for considering
complex road conditions by setting a scenario diversity as objectives in the fitness function. It also
reduces occurrences of violation masking by dynamic range analysis to reduce duplicate module
violations. Besides, the complexity and diversity of initial scenarios generated by ADS testing
approaches vary. DoppelTest generates the most sophisticated scenarios as it uses the ADS to model
every vehicle in the simulation, making the scenario more complex because vehicles are reacting to
each other. scenoRITAmodels automatically generate a considerable number of obstacles andmodel
them as constant speed obstacles, having the highest number of obstacles across all approaches.
While DoppelTest and scenoRITA automatically analyze the map and generate different scenarios
in terms of the initial and final location of the AV, AutoFuzz and AV-Fuzzer always generate similar
scenarios that start at the same position and finish at the same position.

Finding 2: ConfVE managed to generate 27.40%, and 65.88% more unique, emerged violations
compared to the pairwise testing and ConfVD within the same time budget. ConfVE performs
better in complex and diverse scenarios and produces more violation types than the baselines.

5.4 RQ3: Duplicate Violation Elimination

In RQ3, we study the extent to which ConfVE eliminates similar violations and compare the
percentage of duplicate violations generated by 3 configuration testing approaches. To answer
this RQ, we use DBSCAN [51] to cluster the scenarios with similar violations into the same group,
based on a set of features as described in Table 2.

Table 6 shows all emerged violations (including duplicates) generated by Apollo and Autoware
along with the number of unique violations (generated by Duplicate Violations Eliminator) and
the percentage of eliminated violations. From the results, we observe that ConfVE has a lower
elimination ratio (74.19%) than (81.45%) of pairwise testing overall, while ConfVE found fewer
emerged violations in total but produced more unique, emerged violations, which indicates that
ConfVE is more efficient at finding diverse violations. Although ConfVD has fewer emerged
violations in total and less elimination ratio, the number of unique emerged violations is significantly
fewer than ConfVE and pairwise testing.
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Table 6. Results of Duplication Violation Elimination

Violation

Type

ConfVE Pairwise ConfVD

All Uniq. Elim. All Uniq. Elim. All Uniq. Elim.

Collision 29 19 34.48% 29 13 55.17% 24 12 50.00%
Fast Accel. 100 39 61.00% 44 24 45.45% 34 19 44.12%
Hard Brak. 1482 380 74.36% 741 224 69.77% 734 211 71.25%
Speeding 842 223 73.52% 380 133 65.00% 311 113 63.67%
Unsafe LC 1391 415 70.17% 634 238 62.46% 592 205 65.37%
LC in Junc. 314 90 71.34% 225 76 66.22% 162 58 64.20%

Delay 703 95 86.49% 504 91 81.94% 110 36 67.27%
Malfunc. 1743 375 78.49% 4338 428 90.13% 1322 297 77.53%
Paralysis 441 182 58.73% 796 200 74.87% 385 145 62.34%
Total 7045 1818 74.19% 7691 1427 81.45% 3674 1096 70.17%

We also found that module mal-
function is the most frequent viola-
tion type to occur for both ConfVE
and pairwise testing. Furthermore,
pairwise testing has the highest du-
plicate elimination ratio, i.e., 90.13%
with 4,338 total violations, suggest-
ing that ConfVE outperforms pair-
wise testing, which spent an exces-
sive amount of time testing module
malfunction violations, likely due to
it lacking a dynamic range analysis to narrow down valid option ranges like that found in ConfVE.

Finding 3: The Duplicate Violation Eliminator eliminated 74.19% duplicate tests in ConfVE,
81.45% in pairwise testing, and 70.17% in ConfVD. Nevertheless, ConfVE had 27.40% more
unique, emerged violations (1,818) than pairwise testing (1,427) and 65.88% more unique,
emerged violations than ConfVD (1,096).

5.5 RQ4: Runtime Efficiency of ConfVE

To investigate the runtime efficiency of ConfVE, we measure the execution time of scenarios
for each combination of a scenario-generation approach and HD Map. Scenario Player plays and
records every scenario for the same amount of time (i.e., 30 seconds), which previous work [59, 60]
has shown to effectively balance the time allocated to find bugs without spending an excessive
amount of time executing tests. As a result, every scenario has the same execution time, making
Scenario Player’s difference in execution time across scenario-generation approaches negligible. At
the same time, Configurator takes 0.1 seconds or less to execute, on average, making the execution
time negligible. Consequently, the major differences in time efficiency arise from Scenario Generator
and Duplicate Violation Eliminator . Scenario Generator employs scenario-generation approaches to
produce initial scenarios while the Duplicate Violation Eliminator measures violations through 9
test oracles and eliminates duplicates. Note that ConfVE and pairwise testing incur the same time
spent executing the Scenario Generator because it needs to be only executed once and, thereafter, is
used to provide initial scenarios as input before ConfVE or pairwise testing runs.

Table 7. Runtime Efficiency of ConfVE Per Scenario (Scenario
Generator + Duplicate Violation Eliminator)

HDMaps

Execution Time (sec.)

scenoRITA DoppelTest AutoFuzz AV-Fuzzer AutoEva.

Borregas Ave (34.07+0.86) (45.55+0.74) (40.86+0.32) - -
San Mateo (33.33+3.23) (48.36+3.00) - - -

Sunnyvale Loop (35.54+5.25) (48.94+11.95) - - -
San Francisco - - - (53.86+0.61) -

LEO-VM - - - - (60.67+3.90)
AWF CICD - - - - (58.02+5.48)
Taiwan - - - - (57.79+4.50)

Table 7 shows the average time
to execute the Scenario Genera-
tor and Duplicate Violation Elimina-
tor for a scenario. As an example,
for scenoRITA, scenario generation
takes 34.07 seconds and duplicate vi-
olation checking takes 0.86 seconds.
The results for Table 7 indicate that
the size of the map is correlated with
the measurement time of violations.
Duplicate Violation Eliminator takes 5.25 or 11.95 seconds to analyze one scenario from scenoRITA
or DoppelTest in Sunnyvale Loop, which is considerably longer compared with a scenario from
Borregas Ave. For Autoware, the scenario generation time ranges from 57.79 to 60.67 seconds and
the Duplicate Violation Eliminator time ranges from 3.90 to 5.48 seconds.
We also compared different scenario-generation approaches in terms of time efficiency of gen-

erating initial scenarios for the same map, Borregas Ave. DoppelTest takes the longest time to
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generate a scenario, which is consistent with the fact that only DoppelTest considers traffic light
signals and manipulates intelligent obstacles thus generating the most complicated scenarios.
Finding 4: Overall, ConfVE adds an additional 0.32 seconds to 11.95 seconds per scenario
depending on the utilized scenario-generation approach and HDMap, which is small compared
to the time it takes for a scenario-generation approach to produce a scenario (i.e., 33.33 seconds
to 60.67 seconds), making the runtime overhead of ConfVE relatively small.

6 THREATS TO VALIDITY

Internal Threats. One potential threat to internal validity is that testing results under specific
configurations are not always deterministic. To reduce the non-determinism, we rerun the initial
scenarios 10 times to collect the initial violations for checking of emerged violations and rerun
ConfVE and pairwise testing on each combination of a scenario-generation approach and HD Map
3 times to get averages for evaluation results. In principle, rerunning more times could produce more
accurate results. We select the rerunning times mainly for a trade-off between the time budget and
the accuracy of results. Another threat arises from our large-scale experiment requiring multiple
machines to execute a total of 124,950 tests. To mitigate this threat, we selected machines with
similar hardware specifications and constantly monitored resource usage during all experiments to
ensure sufficient hardware resources were allocated to the ADS at all times.
External Threats. One external threat is our evaluation of ConfVE on limited ADSes. This

threat is mitigated by Apollo and Autoware being high autonomy (i.e., Level 4), and open-source
versions of the production-grade AV software systems. Apollo is selected by Udacity to teach
state-of-the-art AV technology [27] and can be directly deployed on real-world AVs such as Lincoln
MKZ, Lexus RX 450h, and others [6, 16], and has mass production agreements with Volvo and
Ford [32] while the Autoware Foundation’s membership comprises several industrial entities [12] .
Construct Validity. A threat to construct validity is how we evaluate different violations.

To mitigate this threat, we measure these violations using grading metrics defined by Apollo’s
developers [3]. We utilize thresholds (e.g., speeding or acceleration thresholds) set by Apollo’s
developers [3], the U.S. Department of Transportation [52], or major AV companies [5].
7 RELATEDWORK

ADS Testing Approaches. A variety of ADS testing approaches focus on generating driving
scenarios [59, 60, 64, 66, 68, 79, 80, 82, 87], ADS test selection and prioritization [50, 69] and also
evaluate in an open source ADS, i.e. Baidu Apollo [28]. Besides the scenario-generation approaches
described in Section 5.1, Lu et al. proposed DeepCollision [68], which leverages deep reinforcement
learning to configure the simulator using its APIs to construct virtual environments and focuses on
generating scenarios that involve collisions. Tian et al. proposed MOSAT [79] and CRISCO [80]
that abstract the movements of road traffic participants into a diverse set of maneuvers and find
combinations of maneuvers to create scenarios that are more complex than the ones generated by
AV-Fuzzer. These two approaches have not been made available and therefore cannot be used as
part of ConfVE. Deng et al. proposed STRaP [50], which segments the original ADS scenario to
effectively reduce the length of the scenarios but maintain high fault coverage. Lu et al. proposed
SPECTRE [69], which extracts attributes from scenarios (e.g., collisions and collision probability)
and applies multi-objective evolutionary algorithms to select and prioritize test scenarios.

Unlike previous approaches, ConfVE focuses on testing ADS under different configurations to
discover emerged violations. ConfVE also applies a more diverse set of oracles that can detect
module failure, safety, and comfort violations.

(Mis)configuration Testing. A traditional way to test configurations is to use a sampling-based
testing strategy. Medeiros et al. presented a comparative study [71] between 10 sampling algorithms
for finding configuration-related faults. The study showed t-wise sampling algorithms detected 92%
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of configuration-related faults on a corpus with existing faults, with pair-wise sampling algorithm
being one of the most efficient algorithms. Jung et al. proposed Swarmbug [62], which aims to
diagnose the root cause and fix bugs when a robotic system is misconfigured. Sun et al. proposed
Ctest [77], which aims to detect failure-inducing configuration changes to prevent production
failure, but instruments the software system, which can violate real-time properties of an ADS. Keller
et al. proposed ConfERR [63], which models human errors when generating misconfigurations (e.g.,
typo). Xu et al. proposed SPEX [83], which infers configuration requirements from source code so
that misconfiguration vulnerabilities (i.e., bad system reactions, such as crashes and hangs) can be
exposed. SPEX only generates values out of valid ranges. However, in the ADS testing, some values
within a valid range can also lead to AV misbehaviors. Zhang et al. proposed ConfDiagDetector [86],
which aims to detect improper diagnostic output produced by the system under misconfiguration.
Li et al. proposed ConfVD [67], which utilizes fine-grained constraints of option type classification,
so a more diverse set of misconfigurations can be generated. ConfERR, SPEX, ConfDiagDetector,
and ConfVD focus on the mutation operators, which serve as a way to change the values of options
rather than searching for which options to change or how to generate alternative configurations.
These approaches also require some knowledge about option ranges or techniques to infer

possible ranges before testing, which is time-consuming and performs poorly in the ADS domain.
They have two key deficiencies: (1) not identifyingwhich options should be changed to reduce search
time (e.g., through a genetic algorithm), and (2) not identifying values of configuration options in
ADSes that are likely to exhibit failure since ADSes typically do not include this information about
valid/invalid option ranges, which are likely to be real-valued/floating-point and undocumented,
and pre-existing work ignores by assuming these values can be obtained a priori. Unlike these
techniques, ConfVE employs a runtime range analysis to identify option ranges to save testing
time and is well-suited for the ADS domain’s large potential space of real-valued/floating-point
ranges while none of these techniques are designed for the ADS domain.
8 CONCLUSION

We propose ConfVE, the first automated configuration testing framework in the ADS testing
domain, which exposes ADS to 3 types of safety-critical, 3 types of motion sickness-inducing, and
3 types of inner module violations in a manner that reduces duplicate violations. We evaluate
ConfVE on Baidu Apollo, a high autonomy (Level 4), open-source version of a production-grade
ADS that supports a wide variety of driving scenarios, and Autoware, an open-source version
of a near production-grade ADS whose foundation’s membership comprises several industrial
entities, such as Intel, Hitachi, LG, and Xilinx. We compare ConfVE with pairwise testing, which
is known to work highly effectively for highly configurable software systems, and ConfVD, a
state-of-the-art misconfiguration testing approach. We further compare different state-of-the-art
scenario-generation approaches for ADSes under different HDMaps in terms of violation emergence.
ConfVE found a total of 1,818 unique, emerged violations and reduced 74.19% of duplicate violations
withmodule malfunction, unsafe lane-change, and hard braking violations occurring most. Moreover,
ConfVE generated, on average, 27.40% and 65.88% more unique, emerged violations for different
ADS scenario-generation approaches in total compared to pairwise testing and ConfVD within
the same time budget. In the future, we aim to (1) expand ConfVE framework to cover different
optimization algorithms like deep reinforcement learning for handling large-scale configurable
systems, (2) use configuration testing knowledge to aid cause analysis and bug localization of
ADS bugs, and (3) apply more exotic learning-based approaches, such as surrogate models [58],
to support increasingly complex scenarios, especially if feature or representation learning [41] is
leveraged to reduce the need to hard code or manually identify features.
9 DATA AVAILABILITY

The source code of our approach is available at [1] while video recordings are available at [2].
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