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ABSTRACT
This paper presents the design, implementation, and usage details
of ARCADE, an extensible workbench for supporting the recovery
of software systems’ architectures, and for evaluating architectural
change and decay. ARCADE has been developed and maintained
over the past decade, and has been deployed in a number of research
labs as well as within three large companies. ARCADE’s implemen-
tation is available at https://bitbucket.org/joshuaga/arcade and the
video depicting its use at https://tinyurl.com/arcade-tool-demo.

CCS CONCEPTS
• Software and its engineering→ Software architectures; Soft-
ware system models; Software maintenance tools; Software evolu-
tion.
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1 INTRODUCTION
Architecture plays a critical role in managing the evolution of large,
complex, and long-lived software systems [1, 22, 25, 26]. One of
the most impactful evolutionary aspects of a software system is
architectural drift and erosion, i.e., the inclusion of design decisions
other than those originally intended, which are referred to collec-
tively as architectural decay. Such decay manifests as architectural
smells [8, 9], software anti-patterns [3], and technical debt [14].
An in-depth understanding of a system’s architecture is therefore
critical to effective evolution management.
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Attaining such an understanding is difficult: the architectures of
large systems are often obscured and human-made documentation
is unreliable [27]. This problem is compounded when managing
multiple versions of a software system [7]. To enable continuous
analysis of a software system’s evolution, a framework is needed
for the automatic recovery and evaluation of its architecture.

Analysis of a software system’s architecture can be divided into
at least five principal tasks: (1) recovery, (2) decay detection, (3) mea-
surement, (4) visualization, and (5) prediction. These tasks have
guided our work and form the underpinning for the tool suite we
present in this paper. Architecture recovery is the process of building
architectural models from a system’s implementation artifacts [7].
Decay detection analyzes these models for the presence of architec-
tural “smells”, manifestations of poor design decisions in a system’s
architecture that negatively impact its lifecycle properties, such as
understandability, extensibility, and reusability [8, 9]. An important
aspect of architectural measurement is the quantification of archi-
tectural decay based on characteristics of the recovered models [2].
Architectural visualization is the presentation of important infor-
mation from the architectural model in a human-understandable
form [21]. Finally, prediction is the use of models to detect the archi-
tectural significance of future system issues and modifications [23].

While a number of software tools are available for each of the
various tasks related to software architecture analysis [6, 12, 21],
there have been no solutions available that perform all of the tasks
in tandem. Furthermore, existing tools are often difficult to use
out-of-the-box, restricting their adoption. Once adopted, they can
be difficult to combine due to using different data and file formats.
This motivated us to present ARCADE – Architecture Recovery,
Change, and Decay Evaluator. ARCADE is an extensible research
workbench that incorporates a large number of both custom-built
and third-party tools. ARCADE allows the inclusion of new solu-
tions for the tasks involved in software architecture analysis. Its
execution is flexible, allowing the user to select which tasks to exe-
cute and which of the tool options to apply for each task, including
the possibility of executing multiple tools for any single task. For
example, a user may choose to execute only recovery and decay
detection on their system, but to recover multiple different archi-
tectural models by applying different recovery tools. Importantly,
ARCADE inherits the properties of the tools it implements and/or
incorporates off-the-shelf, allowing one to select different trade-offs
in their analysis depending on the tools executed. It also allows
direct empirical comparison of the selected tools.

ARCADE is a relatively large research-off-the-shelf system devel-
oped and evolved over the past decade. It has been deployed at over
20 research groups around the world and at three large companies.

1546

https://bitbucket.org/joshuaga/arcade
https://tinyurl.com/arcade-tool-demo
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1145/3368089.3417941


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Marcelo Schmitt Laser, Nenad Medvidovic, Duc Minh Le, and Joshua Garcia

Figure 1: ARCADE’s dataflow architecture, with its inputs and five principal subsystems delineated in different vertical seg-
ments. Each subsystem has at least one component and produces at least one artifact.

In our research group, ARCADE has been applied in the analysis of
nearly 1,000 versions of over 50 software systems, totaling around
500 MSLOC. This paper describes ARCADE’s design, its support
for the five principal architectural analysis tasks described above,
and the details of its implementation and application in practice.

2 DESIGN
ARCADE’s high-level architecture is divided into five subsystems,
focusing on the principal tasks of (1) recovery, (2) decay detection,
(3) measurement, (4) visualization, and (5) prediction. Each of these
tasks may be performed by one or more tools integrated within
ARCADE. The architecture of ARCADE is shown in Figure 1.

2.1 Recovery
Recovery constructs architectural models from implementation-
level artifacts. ARCADE allows the integration of any architec-
ture recovery technique, so long as it is encapsulated to be in-
vokable using a standardized API. ARCADE currently integrates
ten off-the-shelf recovery tools [7], including ACDC (Algorithm
for Comprehension-Driven Clustering) [27], ARC (Architecture
Recovery using Concerns) [10], WCA (Weighted Combined Algo-
rithm) [18], Bunch [17], and ZBR (Zone-Based Recovery) [4, 5]. Each
of these tools may be run independently or in tandem, enabling the
recovery of a system’s architecture from a specific perspective or
the recovery of multiple perspectives at once; they may also be run
in batches, allowing simultaneous architecture recovery of multiple
versions of a system, or even multiple systems.

The recovery tools integrated within ARCADE implement dif-
ferent strategies for clustering implementation-level entities into
architectural elements, including dependency analysis, information
retrieval, search-based strategies, machine learning, etc. The details
of the clustering depend on the tool and vary at multiple levels, such
as granularity (e.g., the kinds of code-level entities that are clus-
tered) and viewpoint (e.g., clustering based on patterns vs. concerns).
For example, ACDC identifies certain patterns in the dependency
structures of a system’s implementation classes, grouping them in a
way that minimizes inter-component dependencies [27]. The recov-
ery techniques also represent different properties in the resulting
architectures (e.g., semantic as opposed to syntactic properties) [7],
making the combination of their results potentially advantageous.

All recovery tools in ARCADE are applicable to systems built
in C/C++ and Java; a subset of the tools is also available for C#
and Python. Our particular focus on supporting C/C++ and Java

was driven both by their widespread use in practice and by the
availability of off-the-shelf static analyzers for them. The tools take
as input either source code or binaries. The output of a recovery
tool is a list of dependencies and a list of clusters, which together
represent the components and connections of a software system.

2.2 Decay Detection
Architectural smells are instances of potentially problematic de-
sign decisions that, over time, cause architectural decay [8, 9]. AR-
CADE’s decay detectors are applied on the outputs of the recov-
ery tools to identify those instances. Decay detectors currently
available through ARCADE are capable of identifying 11 different
architectural smells, grouped in four categories: interface-based,
change-based, concern-based, and dependency-based [14].

Interface-based smells are defined using the relationship be-
tween the number of interfaces exported by a given component
and the number of other system components that depend on these
interfaces. Change-based smells represent instances of components
that often must be modified at the same time during the system’s
life span. Concern-based smells are occurrences of undesirable se-
mantic issues, such as multiple components performing the same
function; these smells are detected within ARCADE using natural
language processing techniques, such as topic modeling. Finally,
dependency-based smells represent problems in the dependency
graph of a software system, such as cycles or an excessive number
of dependencies involving a particular component. The list of archi-
tectural smells currently detected by ARCADE is found in Table 1.

While all decay detection tools utilize the results of architecture
recovery as input, some require specific recovery tools to be used,
and some may require additional information beyond that provided
by the recovery tools. For example, concern-based smell detection
tools require topic models that are only generated by some of AR-
CADE’s recovery techniques (e.g., ARC [10]). Meanwhile, change-
based smell detection tools require historical data (e.g., logs) from
a version-control repository, as well as models of multiple versions
of a system. The output of a decay detection tool is a list of smell
instances and their affected components and/or code-level entities.

2.3 Measurement
ARCADE incorporates various metrics for quantifying architec-
tural change and decay. These metrics focus either on the whole
system or on individual components (i.e., the recovered clusters of
code-level entities). Some of these metrics are described below.
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Table 1: Architectural smells detected by ARCADE
Category Type Definition Consequences

Interface-
based

Unused Interface Component’s interface is not linked to other components Adds unnecessary complexity to the system
Unused Brick Component’s interfaces are all unused Same as Unused Interface, but more severe
Sloppy Delegation Component delegates functionality it could have performed Reduces separation of concerns
Functionality Overload Component has an excessive amount of functionality Reduced modularity
Lego Syndrome Component handles exceedingly small amount of functionality High coupling

Change-
based

Duplicate Functionality Several components replicate the same functionality Bugs if changing only one duplicate
Logical Coupling Parts of different components are frequently changed together Similar to Duplicate Functionality

Dependency-
based

Dependency Cycle Set of components whose links form a circular chain Changes to one component affect the entire cycle
Link Overload Component’s interfaces have too many dependencies Reduced isolation of changes

Concern-
based

Scattered Parasitic Funct. Multiple components responsible for realizing one concern Changing a featuremodifiesmultiple system parts
Concern Overload Component implements an excessive number of concerns Violates separation of concerns

2.3.1 System-Level Metrics. System-level metrics in ARCADE are
used to quantify characteristics of an entire architecture. They
support the measurement of change and decay aspects of multiple
versions of a system, helping to assess its evolutionary traits [2, 14].

MojoFM [28] is a distance metric between two architectures, and
is based on two operations used to transform one architecture into
another: moves (Move) of implementation-level entities from one
architectural cluster to another and merges (Join) of clusters.

a2a measures architectural change [2] by computing the mini-
mum number of operations required to transform one architecture
to another. This transformation is based on five fundamental op-
erations on an architecture: adding/removing a cluster (i.e., com-
ponent), adding/removing a code-level entity to/from a cluster, and
moving an entity between clusters. a2a is computed using the Hun-
garian algorithm [20], to account for the fact that the total number
of code-level entities in the architecture changes over time.

Finally, cvg [2] measures the similarity of clusters within an
architecture. The similarity between each pair of clusters is calcu-
lated using a component-level metric, c2c, which represents the
proportion of code-level entities that overlap between the clusters
(discussed further below).

2.3.2 Component-Level Metrics. Component-level metrics mea-
sure aspects of specific components within an architecture, as well
as the relationship between groups of components.

𝑐2𝑐 [2] measures the degree of overlap between implementation-
level entities contained within two clusters:

𝑐2𝑐 (𝑐𝑚, 𝑐𝑛) =
|𝑐𝑚 ∩ 𝑐𝑛 |

𝑚𝑎𝑥 ( |𝑐𝑚 |, |𝑐𝑛 |)
× 100%

The denominator normalizes the entity overlap, ensuring that 𝑐2𝑐
provides the most conservative value of cluster similarity.

Modularization Quality (MQ) [19] spans the component- and
system-levels. It is a measure of coupling and cohesion, defined as:

MQ =

𝑘∑
𝑖=1

CFi

𝑘 is a system’s number of clusters. CF𝑖 is the “cluster factor” of
cluster 𝑖 , representing 𝑖’s coupling and cohesion defined as

CFi =


0 𝜇𝑖 = 0

2𝜇𝑖

2𝜇𝑖+
𝑘∑
𝑗=1
𝑗≠𝑖

(𝜖𝑖, 𝑗 + 𝜖 𝑗,𝑖 )
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜇𝑖 is the number of edges within the cluster, measuring cohesion;
𝜖𝑖, 𝑗 is the number of edges from cluster 𝑖 to 𝑗 , measuring coupling.

2.4 Visualization
The information obtained through architectural analysis helps en-
gineers answer questions related to the current state and evolution
of an architecture, i.e., how it changes and decays. These results
can be difficult to comprehend, however, due to the overwhelming
amount and nature of information (structured text and numbers).
Without adequate visualization support, engineers wanting to in-
vestigate a specific change or smell would have to search manually
through results spanning multiple recovered and analyzed archi-
tectural models. This impacts the understandability of ARCADE’s
output and can actually hamper the needed maintenance activities.

To facilitate the comprehension of ARCADE’s results, a visu-
alization tool is therefore needed. Such tools select and display
information from models in a human-understandable, often graphi-
cal, format, in accordance with a particular viewpoint.

Two visualization tools are currently available in ARCADE:
EVA [21] and ArcadeViz [13]. EVA, shown in Figure 2, graphically
represents the clusters obtained by a recovery tool as large circles
containing smaller circles for code-level entities. EVA can display
the cluster sets of multiple versions of a system simultaneously.
This allows the user to visualize and explore the system’s architec-
ture, as well as gauge the impact of particular design decisions and
judge the system’s architectural stability.

ArcadeViz, shown in Figure 3, uses active views and color-coded
labels to develop views based on the D3.js library. ArcadeViz fo-
cuses on visualizing the architectural differences between versions,
including structural changes in an architecture, changes of compo-
nents’ dependencies and interfaces, and specific locations of decay.

2.5 Prediction
While architectural decaymay not manifest itself in outright system
failures, it imposes real costs in terms of engineers’ time and effort
(e.g. technical debt), and can negatively impact system reliability
and performance. Over time, those implicit and disguised problems
may be revealed as explicit implementation issues.

ARCADE leverages the correlations between symptoms of ar-
chitectural decay and reported implementation issues to accurately
predict a system’s characteristics that will likely manifest in a fu-
ture version (e.g., new issues or increased proneness to change).
ARCADE’s Issue Extractor and Relation Analyzer are used to collect
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Figure 2: EVA visualization of the recovered architecture of
Android 8.0’s Application Framework subsystem. Colors in-
dicate code-level entities from different packages.

the underlying raw system-issue and architectural-smell data, pre-
process it, and feed it to ARCADE’s Model Constructor (Figure 1).

To date, we have implemented two instances of the Model Con-
structor. One instance leverages WEKA [11], a well-known ML
framework, to build issue- and change-proneness prediction mod-
els for a system and to evaluate the models’ accuracy [15]. The other
builds models to estimate the architectural significance of newly
reported implementation issues based on historical data [24]. Both
of these are examples of capabilities enabled by ARCADE that can
help engineers to prevent the adverse effects of architectural decay.

3 ARCADE IN PRACTICE
ARCADE has been developed and evolved over the past decade. Its
current implementation totals over 100 KSLOC distributed across
several languages. In this section, we tie together its major elements
described above and summarize its use to date.

3.1 Typical Usage Scenario
A typical application of ARCADE begins with downloading the
source code and/or binaries of a subject system, and extracting
the implementation issues from an issue repository. One or more
recovery tools are then applied to the implementation artifacts,
producing models of the subject system’s architecture for each of
the system’s versions. These models consist of collections of archi-
tectural clusters, which represent the system’s components, and of
all dependencies between the system’s implementation entities.

Next, decay detection tools are executed over the recovered
architectural models, generating lists of architectural smells. Simul-
taneously, the architectural models are used by measurement tools
to quantify different aspects of architectural quality, producing the
values of various metrics relating to architectural change and decay.
All of these results may be visualized in multiple different ways,
each focusing on a particular set of viewpoints.

Finally, the prediction tools correlate the subject system’s issues
with its detected smell instances, creating a dataset that is used to
build predictive models of the system’s architectural quality and
evolution. These models offer a range of information, from the

Figure 3: Example ArcadeViz visualization of dependency
changes between versions 7.0 and 8.0 of Android. Red lines
indicate incoming dependencies, green lines outgoing de-
pendencies, and purple lines removed dependencies.

architectural significance of particular issues to the likelihood of
certain smells appearing in certain components.

3.2 Application and Use To Date
ARCADE has been deployed at over 20 universities worldwide and
at three large companies. It has been used to analyze software sys-
tems of up to 10 MSLOC (namely, Chromium) [16]. We estimate the
amount of code it has analyzed to date within the studies conducted
by our team alone to be on the order of 500 MSLOC. ARCADE’s
visualization tools have been used to depict the architectures of
systems as large as Android OS’s Application Framework [21].

ARCADE’s results have been validated by the architects of mul-
tiple Apache Foundation projects, as well as engineers within the
aforementioned companies. While we are aware of these external
deployments of ARCADE, we either do not have detailed infor-
mation on its use or are prevented from reporting it due to the
proprietary IP involved. ARCADE has also been used to analyze
itself, and that analysis has helped greatly with maintaining and
evolving its own code base. Finally, ARCADE has been used in
multiple instances in classroom assignments, aiding in teaching
software architecture concepts to graduate-level students.

4 CONCLUSION
ARCADE is a large research-off-the-shelf system whose scope has
grown gradually from architecture recovery alone to the range of
capabilities described in this paper. In addition to its widespread
use, ARCADE has played a key role in at least four completed and
one ongoing doctoral dissertation. The resulting changes applied
to it by different developers for their specific needs have led to
ARCADE’s own design decay, and a significant portion of it has
recently undergone a major refactoring, aided by ARCADE itself.
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