
The Journal of Systems and Software 119 (2016) 31–44

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Software architectural principles in contemporary mobile software:

from conception to practice

Hamid Bagheri a , ∗, Joshua Garcia

a , Alireza Sadeghi a , Sam Malek

a , Nenad Medvidovic

b

a School of Information and Computer Sciences, University of California, Irvine, United States
b Computer Science Department, University of Southern California, United States

a r t i c l e i n f o

Article history:

Received 3 May 2015

Revised 23 May 2016

Accepted 25 May 2016

Available online 1 June 2016

Keywords:

Software architecture

Android

Architectural styles

a b s t r a c t

The meteoric rise of mobile software that we have witnessed in the past decade parallels a paradigm

shift in its design, construction, and deployment. In particular, we argue that today’s mobile software,

with its rich ecosystem of apps, would have not been possible without the pioneering advances in soft-

ware architecture research in the decade that preceded it. We describe the drivers that elevated software

architecture to the centerpiece of contemporary mobile software. We distill the architectural principles

found in Android, the predominant mobile platform with the largest market share, and trace those prin-

ciples to their conception at the turn of century in software architecture literature. Finally, to better un-

derstand the extent to which Android’s ecosystem of apps employs architectural concepts, we mine the

reverse-engineered architecture of hundreds of Android apps in several app markets and report on those

results.

© 2016 Elsevier Inc. All rights reserved.

1

v

f

C

s

g

(

f

w

w

e

c

m

a

a

t

o

p

a

d

t

m

a

d

a

m

a

f

l

m

s

n

o

w

a

w

b

p

a

h

0

. Introduction

Mobile computing has come a long way from a decade ago. De-

elopment of mobile software used to be an art exercised by a

ew, savvy, experienced developers, capable of hacking low-level

 code—the lingua franca of mobile software at the time. The re-

ulting software systems were often monolithic, rigid, one-off pro-

rams, which were hard to construct, understand, and maintain

 Picco et al., 2014). Although software architectural principles had

ound widespread use in structuring the traditional desktop soft-

are at the turn of century (Taylor et al., 2009), mobile software

as often devoid of such structures (Picco et al., 2014; Medvidovic

t al., 2003).

The dominant preconception was that for developing effi-

ient software, suitable for deployment on resource-constrained

obile platforms, it is necessary to compromise on flexibility

nd decoupling achieved through architectural principles, such

s decomposition of a software system into components, separa-

ion of communication links in the form of connectors, and so

n Medvidovic et al. (2003) ; Malek et al. (2007) . In particular,

rogramming-language abstractions needed for the realization of
∗ Corresponding author.

E-mail addresses: hamidb@uci.edu (H. Bagheri), joshug4@uci.edu (J. Garcia),

lirezs1@uci.edu (A. Sadeghi), malek@uci.edu (S. Malek), neno@usc.edu (N. Medvi-

ovic).

o

t

t

t

s

ttp://dx.doi.org/10.1016/j.jss.2016.05.039

164-1212/© 2016 Elsevier Inc. All rights reserved.
hose architectural concepts were deemed unsuitable for use in

obile software.

Today’s mobile software, however, differs greatly from that of

 decade ago (Wasserman, 2010). Our empirical investigation—the

etails of which are described in Section 5 —shows that software

rchitecture plays a significant role in the development of modern

obile software. Many of the ideas devised in pioneering software

rchitecture work, developed around the turn of this century, have

ound a home in the contemporary mobile software. In particu-

ar, Android, which is the predominant mobile platform, realizes

any of the architectural principles previously advocated by the

oftware-engineering community.

At first blush, one may conjecture that the increasing promi-

ence of software architectural principles is a natural progression

f software-engineering practices in any computing domain. But

hen we look at other closely related areas of computing, such

s embedded software, we do not find a similar adoption of soft-

are architectures. It is, thus, important to understand the drivers

ehind the rapid adoption of software architectures in mobile com-

uting, as well as the nature of the adopted architectural concepts

nd principles, and how their use has impacted the development

f mobile software.

To that end, we first describe several requirements that drove

he adoption of many of the architectural principles advocated in

he literature in modern mobile software development. We also

race back those principles to their conception in the pioneering

oftware-architecture research, in particular the research on the

http://dx.doi.org/10.1016/j.jss.2016.05.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.05.039&domain=pdf
mailto:hamidb@uci.edu
mailto:joshug4@uci.edu
mailto:alirezs1@uci.edu
mailto:malek@uci.edu
mailto:neno@usc.edu
http://dx.doi.org/10.1016/j.jss.2016.05.039

32 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

2

b

m

i

e

p

f

b

p

a

a

o

d

v

g

k

m

e

t

f

v

T

a

p

s

c

m

e

c

a

t

p

a

t

c

w

i

a

e

(

s

a

l

b

t

f

t

m

s

a

a

(

r

s

S

a

w

d

1 Note that in this paper the term “offload” is used to mean temporarily removing

a task from processor/memory to make them available for other tasks. It should not
applicability and benefits of architecture-based design and devel-

opment in a mobile setting. Afterwards, we present some of the

key architectural concepts found in Android, often codified in its

application development framework , which provides programming-

language constructs for architecture-based development of mobile

software, including support for the realization of software compo-

nents, connectors, events, configurations, and architectural styles.

We argue that software architectural support in Android has

played a key role in its meteoric rise and success. Our empiri-

cal observation corroborates the notion that architectural building

blocks in Android are supported in the Android platform’s pro-

gramming constructs, which promises to dramatically improve an

app developer’s productivity, and also makes it much easier to de-

velop complex apps without a formal education in programming,

or previous programming experience. This, in turn, supports even

novice programmers in developing sophisticated apps with the po-

tential of becoming popular in app markets, such as Google play .

Codification of an architectural family and separation of communi-

cation from the application logic, using asynchronous connectors,

have facilitated the integration of third-party code in a mobile de-

vice, thereby directly spawning a vibrant ecosystem of apps.

The contributions of this paper can be summarized as follows:

• Identifies the drivers behind the rapid adoption of software ar-

chitecture concepts and principles in contemporary mobile soft-

ware, specifically Android.
• Distills the architectural principles found in Android and illus-

trates them using a popular mobile app.
• Traces back those principles to their conception in software-

architecture research.
• Reports on the characteristics of architectures found in the An-

droid ecosystem of apps by mining hundreds of Android apps

in several app markets.
• Reflects on deviations from how architectural concepts have

been prescribed in architecture literature and the manner in

which Android has realized some of those concepts, thereby

concluding with lessons that could be of interest to both the

mobile-computing industry as well as software-architecture re-

searchers.

The remainder of the paper is organized as follows.

Section 2 outlines the mobile-computing requirements that drove

the adoption of software architectures. Section 3 describes a popu-

lar mobile app that we use to illustrate the architectural concepts

in Android. Section 4 presents the key architectural principles

followed by Android as well as their conception in the literature

that predates it. Section 5 reports on the architectural properties

of hundreds of reverse-engineered apps. Section 6 discusses the

salient outcomes of our study. Finally, the paper concludes with

an outline of the related research in Section 7 and an overview of

our contributions in Section 8 .

2. Mobile computing drivers

Before describing the architectural concepts found in contempo-

rary mobile software, it is important to understand the key chal-

lenges that the mobile-computing industry has had to overcome

over the past decade. The need to overcome these challenges is

the root cause of the drastic shift toward the adoption of software

architectures in today’s mobile software.

(D1) App ecosystem. Perhaps the most striking difference be-

tween today’s mobile platforms and those of a decade ago is the

notion of app ecosystem . An app ecosystem is the interaction of a

set of independently developed software elements (apps) on top

of a common computing platform that results in a number of

software solutions or services (Manikas and Hansen, 2013; Bosch,
009). App stores and apps have changed the landscape of mo-

ile computing: entrepreneurs are able to reach a large consumer

arket, consumers can choose from thousands of apps at a nom-

nal cost, and app advertising has created a lucrative form of rev-

nue for the developers. Apps extend the capabilities available on a

latform, making the platform more attractive to the users. There-

ore, a vibrant app ecosystem is crucial to the success of a mo-

ile platform, such as Android. A key challenge in conceiving such

latforms, however, was encoding constraints and rules to enable

 properly functioning ecosystem with certain norms of structure

nd behavior, yet remaining sufficiently flexible to allow the devel-

pers to fully exploit the capabilities available on modern mobile

evices (Eklund and Bosch, 2014).

(D2) Developer productivity. As alluded to earlier, the de-

elopment of mobile software previously involved low-level pro-

ramming, often against the various device drivers, akin to the

ind of practices still followed in the embedded-computing do-

ain (Malek et al., 2007). At the same time, the success of an app

cosystem, and thus the corresponding mobile platform, hinges on

he availability of a large number of apps for end users to choose

rom. Such an app ecosystem requires a large pool of qualified de-

elopers capable of creating apps without highly specialized skills.

hus, the awareness grew that mobile platforms vying for a vibrant

pp ecosystem need to provide the developers with high-level im-

lementation abstractions, and properly-enforced rules and con-

traints on how those abstractions can be composed, to ease the

onstruction of apps.

(D3) Interoperability. A particular challenge in conceiving the

odern mobile-computing platforms lied in providing a rich user

xperience, where a mobile device’s native capabilities (e.g., phone,

amera, and GPS) as well as third-party apps are able to integrate

nd interact with one another. Achieving this objective requires in-

eroperability between third-party apps that are developed inde-

endently, and possibly without knowledge of one another, as well

s software and hardware services that are available on a multi-

ude of proprietary devices (Ebert and Jones, 2009). This challenge

alled for explicit specification of exposed interfaces of apps, as

ell as standards, rules, and architectural styles that regulate the

nteractions of apps and system services.

(D4) Security and privacy. Seamless interoperability between

pps, together with the various private user data collected on mod-

rn mobile devices, gave prominence to security and privacy issues

 La Polla et al., 2013). In addition, the app-store model of provi-

ioning apps proved convenient not only for the end users, but

lso for the malware writers that exploited it for delivering ma-

icious code into the users’ devices (Zhang et al., 2013). To com-

at these threats, proper abstractions were needed for specifica-

ion, assessment, and enforcement of security properties (e.g., in-

ormation flow and access control) at a higher level of granularity

han code.

(D5) Resource constraints. Finally, as the apps deployed on

obile platforms continued to grow in size and complexity, re-

ource constraints (e.g., energy and memory) continued to pose

n ever-present challenge. Specifically, there was a need to man-

ge and coordinate the resources consumed by third-party apps

 Nikzad et al., 2014). As an example, consider that many apps may

equire access to GPS information, but an uncoordinated access to

uch information rapidly drains the battery of a mobile device.

imilarly, multiple apps may be running on a mobile device, but

t any point in time only parts of those apps are actively used;

ithout dynamically offloading the unused elements at runtime, a

evice would run out of resources rapidly. 1 To address these chal-

H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44 33

Fig. 1. K-9 mail client app.

l

a

m

3

c

o

a

w

c

h

t

a

e

w

p

c

s

t

d

i

4

c

l

t

4

c

f

l

b

p

s

b

c

t

p

l

s

w

f

p

o

a

t

d

s

A

o

n

m

G

s

t

c

i

a

e

e

v

enges, there was a need for structural and behavioral abstractions

t a higher-level of granularity than code that could effectively

itigate the non-functional concerns in a coordinated fashion.

. Running example

To illustrate the concepts in this paper, we use a popular email

lient for Android, namely K-9 mail. Fig. 1 provides a screen shot

f K-9 mail, which is an app that provides the ability to send

nd receive messages from multiple email accounts and integrate

ith Firefox. For example, K-9 mail can send an email after a user

licks on a hypertext email link embedded in a web page (< a
ref = ’’mailto:...’’ >). Moreover, K-9 mail uses OpenPGP,

he most widely used email encryption standard, for encrypting

nd decrypting emails.

Fig. 2 shows the architecture of K-9 mail that we have reversed

ngineered from its source code. The details of this architecture

ill be explained in the following sections. Note that the com-

lete architecture of K-9 mail is significantly more complex and

omprises more than 40 software components. For clarity, we only

how a subset of its most interesting elements. K-9 mail also in-

erfaces with two other apps (Firefox Browser and OpenPGP), the

etailed architectures of which have been elided due to space lim-

tations.

. Architectural principles in A ndroid

We now describe the software architectural concepts and prin-

iples that have played a significant role in addressing the chal-

enges described in Section 2 , and illustrate them using the archi-

ecture of K-9 mail.

.1. Software architecture building blocks

In any software project, implementation of the software is pre-

eded with a design activity. The design process could be either

ormal, whereby the design decisions are documented in some pre-

iminary architectural models, or informal, whereby the designer
e confused with the usage of the term to mean moving computations to a different

latform.

imply draws an initial decomposition of the system on a white-

oard. Regardless of the approach followed, the key to this pro-

ess is how the developer conceptualizes a software system, i.e.,

he design idioms and elements a developer employs to decom-

ose a system into its constituent parts.

Object-oriented constructs, such as classes, are typically too

ow-level for conceptualizing the high-level structure of a complex

oftware system. The pioneering work of Wolf and Perry (1992) , as

ell as Shaw and Garlan (1996) , showed that a proper abstraction

or reasoning about the elements of a software system are its Com-

onents, Connectors , and their Configurations . Subsequent research

n Prism (Medvidovic et al., 2003; Malek et al., 20 05; 20 07), an

rchitectural design framework for mobile software, showed that

hese abstractions also provide a proper level of granularity for the

esign and construction of mobile software.

In practice, many of the same constructs devised by the

oftware-architecture research community can be observed in the

ndroid framework. Components are also the basic building blocks

f Android apps Google . Android provides four types of compo-

ents:

1. Activity provides the basis of the Android user interface Google .

Each app may have multiple Activities representing different

screens of the app to the user. The Accounts component in

Fig. 2 is an example of an Activity that allows the user to

view the status of its mailbox accounts, and corresponds to the

bottom-most screen depicted in Fig. 1 .

2. Service provides the background processing capabilities, and

does not provide any user interface Google . The MailService

component in Fig. 2 is an example of a service that periodi-

cally downloads mail from the server, which can occur while a

user interacts with another app.

3. Content provider offers data storage and retrieval capabilities

to other components Google . It can be used to share and per-

sist data within components of an app, as well as across apps.

EmailProvider in Fig. 2 is an example of a Content Provider; it

maintains a repository of downloaded emails on a device.

4. Broadcast receiver responds asynchronously to system-wide

message broadcasts Google . A Broadcast Receiver typically acts

as a gateway to other components, and passes messages to Ac-

tivities or Services for handling. RemoteControlReceiver is an ex-

ample of a Broadcast Receiver in Fig. 2 , and it dispatches Intents

for externally controlling the behavior of K-9. Although classi-

fied as a component type in Android, we argue that Broadcast

Receiver is best explained as a connector; this is an issue that

we revisit later in this paper.

Android also supports lower-level components, called Frag-

ents , that provide another layer of abstraction within an Activity

oogle . A Fragment serves as a modular section of an Activity, re-

ponsible for handling events associated with a particular part of

he corresponding user interface. Each Fragment has its own life-

ycle, receives its own events, and can be added or removed while

ts enclosing Activity is running Google .

Components and whole apps in Android communicate with one

nother using a variety of mechanisms. Although the Android lit-

rature does not refer to them as connectors, Android’s runtime

nvironment provides a variety of connector types. Our study re-

ealed four types of connectors (Mehta et al., 20 0 0) in Android:

1. Explicit message-based connectors enable the exchange of ex-

plicit Intents using Android’s inter-process communication (IPC)

mechanism. An Intent message consists of a payload as well

as meta-data describing it Google . The meta-data includes ac-

tion, data , and category , specifying the general action to be per-

formed by the recipient component, the type of payload, and

34 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

Fig. 2. K-9 mail Android app architecture.

a

p

l

m

p

f

o

i

g

a

h

f

o

h

A

w

o

i

t

i

i

d

t

(

p

t

o

p

i

a

T

s

m

s

o

a

a

l
the kind of component that should handle the Intent, respec-

tively. An explicit Intent is one where the message is tagged

with its recipient Google .

2. Implicit message-based connectors enable the exchange of im-

plicit Intents using Android’s IPC mechanism. An implicit Intent

is one where the message is not tagged with its intended re-

cipient Google . Rather, its meta-data (i.e., action, data, category)

is matched against the Intent Filters specified by other compo-

nents. Intent Filters are Android’s way of specifying the pro-

vided interfaces of a component. An Intent Filter describes the

kinds of requests a given component can respond to. Interest-

ingly, however, Android does not provide a mechanism to spec-

ify required interfaces; we will revisit the implications of this

later in the paper.

3. Data access connectors correspond to Android’s Content
Resolver Google , which provides an interface for adding, re-

moving, and querying the stored data in a Content Provider.

4. Remote procedure calls (RPC) provide IPC through method-

invocation interaction using stubs , which are automatically gen-

erated from the specification of a component’s interfaces in An-

droid’s Interface Definition Language Google .

Finally, Android provides a separate XML file, called manifest ,

that accompanies each app Google . This file allows for specifica-

tion of the system’s configuration in terms of its components and

interfaces. We will provide a more detailed discussion of manifest

file in Section 4.4 .

By providing a common vocabulary of architectural constructs

that developers can use in designing their apps, Android has pro-

vided a level of uniformity in the structure and behavior of apps,

while leaving flexibility in how those constructs are composed

(D1) . Moreover, the separation of computation, in the form of de-

veloper provided components, from communication, in the form of

reusable platform-provided connectors, has alleviated the interop-

erability issues (D3) .

4.2. Hierarchical (de)composition

The work of Kruchten (1995) underlined the importance of

views and viewpoints in mitigating the complexity of architec-

tures. Hierarchical decomposition of a software system’s architec-

ture, and hierarchical composition of a system’s components, are

fundamental tools for producing views of a system’s architecture
t different levels of abstraction (Taylor et al., 2009). The com-

onents of a given conceptual unit are grouped together into a

arger, more complex component; subsequently, that component

ay be grouped with other like components into even larger com-

onents. Depending on the task at hand, stakeholders are able to

ocus on the system’s architecture at one level of abstraction or an-

ther. The key to achieving hierarchies in architecture is the abil-

ty to mask the interfaces of the lower-level components through

ranular higher-level components. Generally, composition has been

chieved in two different ways in the architecture literature: be-

avioral and structural (Taylor et al., 2009). As an example of the

ormer, consider service-oriented architectures, where services are

rchestrated using a work-flow language (e.g., BPEL) to realize a

igher-level service, also known as a composite service (Erl, 2006).

s an example of the latter, consider Prism (Malek et al., 2005),

here a component at one layer of abstraction may itself consist

f an internal architecture with lower-level components.

Android’s approach to hierarchical (de)composition is structural

n nature, and achieved in three key ways: (1) a top-level archi-

ecture containing a set of apps, (2) an app architecture containing

ts own components and connectors, and (3) an Activity contain-

ng a set of Fragments. This hierarchical decomposition enables in-

ependent development of modules at different levels of abstrac-

ions (D1). It further promises to improve developer’s productivity

 D2), because by tackling complexity through hierarchical decom-

osition, a developer can focus on the appropriate abstractions for

he current tasks she is undertaking.

If we consider the app software running on a mobile device as

ur top-level architecture, each app is essentially a top-level com-

onent. Apps at this level can communicate with one another us-

ng Intent messaging connectors or RPCs. Thus, the device (e.g.,

 phone) at any given point in time has a running architecture.

his architecture is dynamic, as new apps are installed, executed,

topped, and removed.

However, each app itself is also composed of an architecture,

eaning that each app comprises components and connectors de-

cribed in the previous section. An app may itself make use of

ther apps. Components comprising an app may also extend one

nother to support specialization of components. Fig. 2 depicts an

rchitecture at the level of an app, in this case that of K-9 mail.

As mentioned in the previous section, at the lowest

evel of granularity, Android provides Fragments . Activities

H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44 35

Table 1

Architectural styles of Android apps

Styles Components Connectors Sync Benefits Drivers

Message-based implicit

invocation

Activities, Services Implicit msg-based Async Evolvability, Maintainability, Heterogeneity D2, D3, D5

Publish-subscribe Activities, Services,

Broadcast Receivers

Implicit msg-based Async Evolvability, Maintainability, Heterogeneity,

Eefficiency

D2, D3, D5

Message-based explicit

invocation

Activities, Services Explicit msg-based Async Evolvability, Maintainability, Heterogeneity,

Effficiency

D2, D3, D5

Shared state Content providers Data access Both Efficiency, Maintainability D2, D5

Distributed objects Activities, Services,

External Apps

RPC Both Interoperability, Maintainability D2, D3

e

p

M

M

s

m

t

a

M

a

m

4

a

d

t

m

s

b

S

s

i

s

d

p

w

p

(

a

c

i

i

t

t

s

c

d

s

o

d

b

e

(

F

w

p

a

r

t

t

a

9

i

M

m

o

t

s

A

t

m

v

p

m

t

p

I

s

c

C

t

i

b

S

p

o

d

t

fi

m

s

R

p

S

(

n

f

a

(

c

i

M

e

ncapsulate Fragments through well-defined interfaces ex-

osed at the Activity level Google . As an example, K-9’s

essageList component from Fig. 2 contains two Fragments:

essageListFragment , which depicts the current list of mes-

ages, and MessageViewFragment , which depicts the current

essage being viewed.

Fragments entail reusability (D2) at a lower level of abstraction

han screens, but at a higher level than UI widgets. For example, on

 larger screen (e.g., on a tablet), MessageListFragment and

essageViewFragment can be contained in the same screen

nd Activity; on a smaller screen (e.g., on a handset), each Frag-

ent can be shown on a different screen and Activity.

.3. Architectural design styles

The Android platform employs different types of components

nd connectors that enable a variety of architectural styles in An-

roid apps. An architectural style is a named collection of architec-

ural design decisions that (1) are applicable in a given develop-

ent context, (2) constrain architectural design decisions that are

pecific to a particular system within that context, and (3) elicit

eneficial qualities in each resulting system (Taylor et al., 2009).

Our empirical investigation of Android apps, detailed later in

ection 5 , shows that Android supports five types of architectural

tyles: message-based explicit-invocation, message-based implicit-

nvocation, publish-subscribe, shared state, and distributed object

tyles. Table 1 summarizes the architectural styles observed in An-

roid apps along with the elements involved in each style and the

roperties thereof.

As we discuss in the rest of this section, the architectural styles

e observed in the Android framework promote several desirable

roperties in mobile systems. They facilitate software maintenance

 D2), promote interoperability between third-party apps (D3), and

llow evolvable and efficient mobile systems in the face of resource

onstraints (D5).

A pervasive architectural style in Android is the message-based

mplicit-invocation style, where components communicate using

mplicit Intent messages Google . Activities and Services are the

ypes of components that participate in this style. This architec-

ural style facilitates efficient, independent component operation

ince Intents can be handled asynchronously. This asynchronous

ommunication allows components to be (1) offloaded as Android

evices switch between apps and (2) resumed from their previous

tate, allowing components to be stopped and started in the face

f resource constraints (D5). Loose coupling between components

ue to implicit invocation further enables Android components to

e evolvable and maintainable (D2). Intent exchange, in this style,

nables communication among heterogenous Android components

 D3). As an example, MessageCompose of K-9 declares an Intent

ilter for any Intent with the SENDTO action.

Another common style in Android is the publish-subscribe style,

hich is a specialization of the implicit-invocation style. For the
ublish-subscribe style in Android, Broadcast Receivers are lever-

ged to dispatch messages to multiple receiving components and

eceive Intents from other components, including the Android sys-

em itself. Activities and Services subscribe to particular Intents

hrough the use of Intent Filters. These publish-subscribe mech-

nisms enable highly efficient dissemination of Intents. For K-

 in Fig. 2 , the Boot Receiver dispatches system Intents—

n this case, the Android system acts as a publisher—to the

ailService , which acts as a subscriber.

In the message-based explicit-invocation style, components com-

unicate directly using messages, i.e., explicit Intents in the case

f Android Google . Message-based explicit-invocation represents

he most commonly used style in Android, according to our re-

ults of mining the reverse-engineered architecture of hundreds of

ndroid apps adopted from several repositories (cf. Section 5). Ac-

ivities and Services are the Android components that can com-

unicate using explicit-invocation style. This style retains the ad-

antages of evolvability (D2) and handling of resource constraints

resent in the other message-based styles (D5); however, the

essage-based explicit-invocation style has the additional advan-

age of reducing communication overhead and unnecessary com-

utation by targeting a specific component as a recipient of an

ntent. For instance, in the example of Fig. 2 , MessageCompose
ends an explicit Intent to EmailAddressList .

The shared state style, where multiple components communi-

ate through a shared data store, is realized in Android through

ontent Providers. These components provide a centralized, struc-

ured data store with uniform mechanisms for adding, remov-

ng, and querying stored data. Such components allow data to

e accessed in an expedient manner and easily modified (D2).

eparating data of an app into its own explicit type of com-

onent results in smaller components that have a lower mem-

ry footprint (D5). A data-access connector accessible through An-

roid’s ContentResolver class provides the interface to Con-

ent Providers. In Fig. 2 for K-9, AttachmentProvider enables

le access to attachments; and EmailProvider allows access to

essages of email accounts.

Finally, Android apps may conform to the distributed objects

tyle, where objects in a distributed system communicate through

PC. For services that need to handle multi-threading and inter-

rocess communication, an Android client (e.g., an Activity) and

ervice can leverage the Android Interface Definition Language

AIDL) to specify the interface through which they can commu-

icate. The RPC mechanism allows developers to program in the

amiliar procedure-call paradigm (D2) while allowing interoper-

bility between apps (D3). Similar to RPC mechanisms in CORBA

 Vinoski, 1997), the AIDL specifies the interface of the Service that

an be accessed; and a Stub class is created through which that

nterface can be accessed as if it were local. In Fig. 2 , Activities

essageList and Message Compose leverage RPCs to request

ncryption services from the external app OpenPGP .

36 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

Listing 1. Part of the Android manifest declaration for the K-9 mail app.

Table 2

Modeling evaluation rubric for the Android manifest.

Scope and purpose Capturing the structure, configuration and interfaces of components in architectures that conform to the constraints

imposed by the Android platform.

Basic elements Components (in one of the pre-defined types of Activity, Service , and Content Provider), interfaces (called Intent Filters),

connectors (called Broadcast Receiver), and permissions (defining both required and enforced permissions for each

component)

Style Manifest models conform to the Android event-driven architectural style; the constraints of that particular style are

implicit in the model.

Static and dynamic aspects Only static structure and interfaces are modeled.

Dynamic modeling Although there is no direct support for dynamic modeling, Android establishes a close correspondence between the

elements in the architectural model and the implementation constructs; thus, changes tracked in one can be

straightforwardly applied to the other.

Non-functional aspects Certain non-functional properties, such as required and enforced access control permissions and required hardware

configurations, can be explicitly modeled.

Viewpoints Structural viewpoint with certain points for capturing particular behavioral aspects of the app.

t

m

o

i

p

K

a

M

n

r

o

l

M

d

f

m

i

n

a

t

a

2

t

d

a

s
4.4. Software architecture models

Since the beginning of the 1990s, multiple ADLs have been de-

veloped to support software-architecture modeling, such as Rapide

(Luckham and Vera, 1995), xADL (Dashofy et al., 2001), and Acme

(Garlan et al., 20 0 0). While each ADL is different and each one tar-

gets a particular domain or certain aspects of a system, the es-

sential concepts common among such ADLs are explicit support

for modeling key architectural elements: Components, Connectors,

Interfaces, and Configurations (Medvidovic and Taylor, 20 0 0). In

turn, specification of an architecture in ADLs enables the analysis

of the system for non-functional properties (D5) , most notably per-

formance (Aquilani et al., 2001; Feiler et al., 2006), among others

(Edwards et al., 2007).

These canonical architectural concepts are also identifiable in

the modeling notations featured in the Android platform. Specifi-

cally, such architectural app descriptions are documented in a sep-

arate XML file, called manifest , that accompanies each app. An An-

droid manifest has a canonical textual representation in which the

app components and the required device features for the app, such

as the minimum version of Android required and any hardware

configurations required, are described. There is an associated form-

based visualization that depicts the Android manifest configura-

tions in a more accessible but less precise way.

Through the use of Android’s manifest file, we are able

to model the configuration of Android apps. Table 2 assesses

the Android manifest with respect to the criteria suggested by

Taylor et al. (2009) for evaluating software architecture modeling

languages. The manifest file of apps installed on a device collec-
ively comprise the description of overarching architecture in a

obile device. In the Android manifest, an app is modeled as a set

f components. A component’s declaration within the app’s man-

fest can also include Intent Filters that specify the component’s

rovided interfaces.

For example, Listing 1 shows part of the manifest for

-9, where two components, namely MessageCompose
nd RemoteControlService , are specified. Here,

essageCompose , which provides the ability to compose a

ew email, is associated with an Intent Filter (lines 9–13) that

esponds to SENDTO Intents. Other components (possibly in

ther apps) can then send an Intent with the SENDTO action to

aunch this Activity. Once the system has matched an Intent with

essageCompose ’s Intent Filter, it launches the Activity and

elivers the Intent.

There is no notion of explicit software connectors in mani-

est files, although a component of type Broadcast Receiver—that

ainly facilitates system-wide message broadcasts through relay-

ng messages to other components—could be interpreted as a con-

ector. Configurations are not explicitly specified in the manifest,

s bindings between interfaces are dynamically realized at run-

ime. This is similar to other dynamically-adaptable architectures

nd their descriptions (e.g., Taylor et al., 1996; Oreizy et al., 1998;

008).

While the Android manifest modeling notations focus on cap-

uring the functional aspects of a system—services provided by

ifferent com ponents and connectors and the interactions that

chieve the overall system functions—they also enable modeling

ome non-functional aspects, such as required and enforced per-

H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44 37

Fig. 3. Activity life-cycle methods.

m

r

s

p

(

m

d

c

w

(

(

a

w

o

i

(

p

A

o

i

p

r

a

s

d

g

c

o

b

c

t

s

m

fi

t

d

4

t

c

o

a

s

r

w

m

c

a

t

k

d

t

2

c

r

l

p

S

c

F

w

J

r

a

f

o

t

p

t

t

t

s

v

i

i

F

p

t

t

c

v

s

i

c

c

a

v

b

c

a

o

r

a

t

i

s

m

a

i

t

d

t

4

f

p

i

2

c

i

s
issions that are Android’s mechanisms for addressing the secu-

ity concerns (D4). Required permissions are a set of permissions

pecifying the resources the app needs to run properly. An exam-

le of the required permissions shown in Listing 1 is Internet
line 2), which grants an app access to the Internet. Enforced per-

issions are a set of permissions that other apps must have in or-

er to interact with this app. As an example, from Listing 1 we

an see that RemoteControlService has specified interactions

ith this component require the REMOTE_CONTROL permission

line 18).

Permissions are the cornerstone for the Android security model

 Enck et al., 2011; Felt et al., 2011). The permissions stated in the

pp manifest enable secure access to sensitive resources (D5) as

ell as cross-application interactions (D3). Separating specification

f these permissions from the low-level implementations realized

n the code provides both design and development conveniences

 D2). It further facilitates the assessment of a system’s security

roperties in terms of its configuration (D4) (Bagheri et al., 2015).

The Android manifest can be considered as a domain-specific

DL, optimized for describing architectures in a particular domain

f the mobile-computing platform. Such a domain-specific model-

ng language results in several advantages. The language scope is

articularly tailored to the needs of the Android app developers,

ather than software developers in general. This scope, in turn, en-

bles excluding unnecessary details and excessively verbose con-

tructs, since the needs for generality are limited. Moreover, An-

roid domain knowledge is directly encoded into the manifest lan-

uage semantics rather than being repeated in every model. As a

oncrete example, since the event-driven style mandates the use

f an event-bus connector—realized by the Android framework—

etween each pair of linked components, there is no need to in-

lude the notion of such a connector in the manifest language, as

he developers and the tool set simply assume the existence of

uch a connector on each link implicitly. However, the ADL-like

anifest of an Android app does not thoroughly support the speci-

cation of all Android-specific architectural concepts, most notably

he required interfaces of Android components. We discuss these

eficiencies in more details in Section 6 .

.5. Architecture implementation and deployment

A particular challenge in the realization of software archi-

ectures is the gap between the architectural elements, such as

omponents and connectors, and their implementation in terms

f programming-language constructs, such as classes, pointers,

nd variables (Bagheri and Sullivan, 2012). Lack of systematic

upport for mapping an architecture to its implementation can

esult in architectural drift (Taylor et al., 2009), a situation

here the architectural models and their implementation do not

atch.

To address this challenge, software architecture-research advo-

ated the development of architecture implementation frameworks —

 piece of software that acts as a bridge between a particular archi-

ecture style and a set of implementation technologies. It provides

ey elements of the architectural style in code, in a way that assists

evelopers in implementing systems that conform to the prescrip-
ions and constraints of the style (Taylor et al., 2009; Bass et al.,

003). Examples of architectural implementation frameworks in-

lude ArchJava (Aldrich et al., 2002), which provided support for

ealizing architectures by extending Java with new programming-

anguage constructs, and C2 framework (Taylor et al., 1996), which

rovided a class library for realizing architectures in the C2 style.

oftware-architecture research also paved the way for the appli-

ation of architecture-based development in the mobile setting.

or instance, Prism-MW (Malek et al., 2005) was the first middle-

are for the architecture-based development of mobile software in

ava.

Interestingly, our empirical investigation, detailed in Section 5 ,

eveals that these principles, first conceptualized in software-

rchitecture research, have also been realized in the Android

ramework. While Android’s architectural concepts and designs

utlined in Section 4.1 provide a certain level of uniformity among

hird-party apps, they are not sufficient for ensuring the actual im-

lementations of those apps abide by the Android-specific archi-

ectural constraints and rules. Without such assurances, it is nei-

her possible to achieve a robust Android ecosystem (D1) nor in-

eroperability (D3). At the same time, without proper development

upport, the developer’s productivity (D2) would suffer, as each de-

eloper would be forced to reinvent an implementation that real-

zes Android’s architectural concepts. To that end, Android has cod-

fied architectural knowledge in two ways: an Android Development

ramework (ADF) and an Android Runtime Environment (ART) .

Similar to prior architecture implementation frameworks, ADF

rovides a library of classes to help the developers implement

heir apps. Specifically, ADF provides classes that developers ex-

end to realize application-specific logic. For instance, the Activity

omponent is realized by extending ADF’s Activity class and pro-

iding an implementation for its various life-cycle methods. Fig. 3

hows the Activity’s life-cycle methods that the developer needs to

mplement. The methods correspond to the callbacks an app re-

eives from the Android system. For example, onCreate() method is

alled when the app is instantiated Google .

On the other hand, ART provides the runtime facilities for re-

lizing Android’s family of architectures. In particular, ART pro-

ides the implementation of Android connectors, such as message-

ased, RPC, and data access connectors (recall Section 4.1). They

orrespond to the communication facilities in Android that are

pplication-independent and can be reused in the construction

f any app. By separating the application-specific logic from the

eusable communication logic, Android also facilitates interoper-

bility among third-party apps (D3).

In addition, the Android architecture plays a significant role in

he secure development of software systems (D4), through isolat-

ng apps from each other and system resources from apps via a

andboxing mechanism Google . Each app runs in its own virtual

achine, and can only access its own files by default, protecting

pps with sensitive information from others. In addition to provid-

ng inter-app isolation, Android requires app interactions to occur

hrough certain, well-defined interfaces. This design, in turn, allows

evelopers to narrow the scope of a system’s security analysis to

hose interfaces (Chin et al., 2011).

.6. Architectural support for non-functional properties

In a resource-constrained environment, such as mobile plat-

orms, efficiency becomes a non-functional property of utmost im-

ortance (Hao et al., 2013). Software architecture can significantly

mprove the prospects for achieving efficiency goals (Taylor et al.,

009). In fact, different architectural elements (i.e., components,

onnectors, etc.) and their configurations have a direct and crit-

cal impact on the system’s efficiency. In addition to such de-

ign choices, architectural tactics, defined by Bachman as “means

38 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

Fig. 4. Distribution of selected apps by (a) category, and (b) size.

b

c

a

r

c

f

M

a

s

t

r

c

q

a

c

i

5

d

c

a

a

m

c

f

l

a

k

i

d

i

c

o

a

a

m

c
of satisfying a quality-attribute-response measure ” (Bachmann et al.,

2003), have a significant impact on a system’s non-functional prop-

erties.

Starting from the components, the rule of thumb is to keep

components small , meaning that each component should ideally

perform a single, specific task in the system (Taylor et al., 2009).

In Android, different types of components are defined for different

purposes, and each one is dedicated to a limited-scoped task. For

instance, recall from Section 4.1 that Activity components provide

an app’s user interfaces, and each Activity component is scoped

to represent a particular screen of the app. The Android system

runs only one Activity at a time, which reduces memory utiliza-

tion and improves efficiency (D5). By decomposing the software

into its architectural constructs, Android is able to offload parts of

the software that are not needed at runtime. Android realizes this

through the notion of component life-cycle (recall Section 4.5), e.g.,

apps need to implement onPause and onResume callbacks, which

are called when the user switches between apps Google .

Fragments also have implications on resource constraints, es-

pecially on performance and energy consumption Google . To pre-

vent redrawing of an entire screen if only a portion of it changes,

a developer can utilize a Fragment to modularize the screen into

regions that can change independently. As an example from K-9,

if a new message arrives, only the part of the screen correspond-

ing to MessageListFragment would need to be redrawn, while

the MessageViewFragment portion of the screen would remain

unchanged. This results in increased performance and decreased

energy consumption (D5), due to the reduced need to redraw the

screen.

Connectors facilitate interactions among components, and thus

can have a direct impact on the system’s performance (Taylor et al.,

2009). The Broadcast Receiver in Android, which as alluded to ear-

lier behaves as a connector, is available in different flavors; care-

ful selection among them is thus important. For instance, Android

supports three types of broadcast Intents Google : (1) Normal broad-

cast s are dispatched to all registered Broadcast Receivers immedi-

ately. This type of broadcast is typically the least efficient since it

potentially executes all registered Broadcast Receivers. (2) Ordered

broadcast s are sent to one Broadcast Receiver component at a time;

and Broadcast Receiver components can set their priority level for

receiving ordered broadcasts. The Intent propagation can be halted

by any Broadcast Receiver in the delivery chain of an ordered

p
roadcast Intent. Using ordered broadcast, higher priority Broad-

ast Receivers in the delivery chain can prevent unnecessary prop-

gation, resulting in efficiency gains. Finally, (3) sticky broadcast s

emain in the system for re-broadcasting to future Broadcast Re-

eivers after they have been delivered. This form of broadcast is a

orm of caching, which can be utilized to improve performance.

The Broadcast Receiver can also be modified through the Alarm

anager Google , a scheduler that, among other things, handles

ccess to the typically energy-greedy system APIs. One particular

cheduling mechanism that can be used by the Alarm Manager

o improve efficiency is InexactRepeating . The key idea here is to

educe the number of times the system needs to access power-

onsuming functionality, such as GPS, through synchronizing re-

uests from various apps. These scheduling mechanisms provide

rbitration facilities to modify the behavior of the Broadcast Re-

eiver (Mehta et al., 20 0 0), and in turn to make the Intent dissem-

nation between the system’s components more efficient (D5).

. Architectural characteristics of A ndroid ecosystem

To further understand the architectural characteristics of An-

roid, we determined the extent to which Android utilizes styles,

omponents, and connectors. To that end, we collected over 1400

pps from four different app repositories: 100 randomly selected

pps and an additional non-overlapping set containing the 100

ost popular free apps (200 in total) from Google play , the offi-

ial Android repository; all 1046 available apps (circa August 2014)

rom F-droid , a repository with only open-source apps; 100 popu-

ar apps from Bazaar , a third-party Android market from Iran; and

nother 100 apps from Wandoujia , one of China’s largest app mar-

ets.

Fig. 4 (a) represents the distribution of apps used in our exper-

ments from different categories, showing that they are sufficiently

iverse, and representative of what one can find installed on a typ-

cal device. According to the diagram, Game, Social, and Communi-

ation are the categories that have the highest numbers of apps in

ur data set, in that order. Fig. 4 shows the distribution of selected

pps by their size. Interpretation of data shows that popular apps

re distributed normally, with the mode of 1250–1500 KLOC. The

ajority of open-source apps are, however, small-sized apps.

We analyzed each app’s configuration file and its source/byte-

ode to extract the app’s architectural characteristics. For this pur-

ose, we leveraged apktool Android apktool to decode the app’s

H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44 39

Fig. 5. Percentage of architectural styles usages in apps of four repositories.

Fig. 6. Average number of Android (a) component instances, and (b) connector usages in each app of four repositories.

m

e

O

s

i

t

O

w

i

m

t

t

r

A

t

o

P

a

a

s

O

c

s

c

o

a

c

t

i

Table 3

Average number of components and their provided ports in each popular app

from the Google Play store for different categories.

Category Average number in each app

Components Provided

Activity Service Receiver Provider Ports

Books & reference 57 .50 6 .50 5 .50 2 .00 18 .00

Communication 61 .38 7 .38 12 .00 2 .38 44 .38

Entertainment 21 .40 3 .60 3 .40 1 .20 11 .40

Finance 111 .50 7 .50 4 .75 0 .75 17 .00

Game 17 .88 1 .76 2 .92 0 .12 4 .48

Media & video 19 .00 4 .50 4 .50 0 .50 20 .00

Music & audio 22 .80 5 .20 7 .20 1 .60 20 .80

Personalization 37 .00 6 .00 8 .00 3 .00 18 .00

Photography 8 .65 1 .43 2 .25 0 .29 5 .21

Productivity 30 .00 3 .75 3 .25 3 .25 20 .00

Shopping 50 .50 6 .67 6 .17 1 .83 16 .33

Social 51 .20 11 .40 7 .20 3 .50 24 .20

Tools 32 .40 6 .20 5 .20 0 .00 12 .60

Travel & local 8 .50 1 .43 2 .24 0 .29 5 .19

Weather 17 .00 11 .00 11 .00 0 .00 20 .00

r

a

p

a

m

k

p

b
anifest file, and Valle é-Rai et al. (1999) to analyze its code and

xtract additional information not available in the manifest file.

ur architectural recovery approach is quite straightforward, as it

imply requires tracking the architectural building blocks defined

n Section 4.1 in the app’s implementation. Fig. 5 depicts all of

he identified styles (recall Table 1) in the four app repositories.

verall, all of the styles we identified are used by every repository

ith the three different variants of message-based styles (includ-

ng publish-subscribe) being the most dominant: Each variant of a

essage-based style is used on average for all repositories by more

han 45% of apps. The message-based implicit and explicit invoca-

ion styles are the most used styles in all apps across all reposito-

ies, making Intents the dominant communication mechanism for

ndroid apps.

Google Play apps, which are the most widely used set of apps,

ake advantage of a variety of styles more often than apps from

ther repositories: each style is leveraged by at least 35% of Google

lay apps and by as many as 80% of Google Play apps. In contrast,

cross all repositories, each style is leveraged by at least 15% of all

pps and by as many as 72% of all apps.

Figures 6 a and b show the average number of component in-

tances and connector usages in each app for different repositories.

verall, Android app architectures make use of a wide variety of

omponents and connectors, which we argue has aided Android’s

uccess. On average, an Android app makes use of between 7–27

omponents and 12–36 connectors, depending on the repository it

riginates from. Google Play apps, the most widely used group of

pps, have the highest number of components and connectors (29

omponents, and 37 connectors per app). In all four repositories,

he ranking of components in frequency from highest to lowest

s: Activity, Content Provider, Service, and Broadcast Receiver. This

i
anking indicates that user-interface functionality and data storage

re the most dominant concerns of Android app architectures.

Table 3 shows the average number of component instances and

rovided ports in each popular app from the Google Play store

cross different categories. Finance apps, such as banking or pay-

ent systems, provide richer user-interface compared to the other

inds of apps, as they have the highest number of Activity com-

onents (on average 111.50 Activity components per app). Running

ackground tasks (via Service components) as well as represent-

ng and manipulating data (via Content Provider components) are

40 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

d

c

t

a

a

b

p

t

6

p

P

v

c

i

s

p

t

g

w

p

e

p

s

(

w

p

a

t

c

g

l

p

S

a

6

b

a

t

i

t

c

i

c

a

i

c

f

m

f

f

t

s

c

t

e

t
largely observable in Social apps. Interpretation of data also reveals

that Communication apps, such as messaging and telephony apps,

that largely depend on listening, receiving, and handling systems

events, have the highest number of Receiver components and pro-

vided ports.

There are several conclusions we can draw from this data. First,

the results show that Android apps indeed have quite complex

and interesting architectures, making use of the whole gamut of

architectural elements found in Android. Since there is generally

a widespread misconception that apps are simple extensions of

a platform, we believe these results may be surprising to some.

While apps may have been quite small early in the evolution of

Android, our study shows that today’s apps consist of tens of com-

ponents and connectors, configured to make use of multiple styles;

thus, they are not that different from architectures one may find

in traditional desktop software. Second, this study, consistent with

other prior studies Bagheri et al. (2015) ; Chin et al. (2011) , shows

that it is possible to recover very precise models of the system’s

architecture through straightforward program-analysis techniques,

due to the existence of architectural elements as essential build-

ing block of Android systems (cf. Section 4.1). This should be of

interest to the software-architecture research community that for

years has struggled with the development of accurate architec-

tural recovery techniques to study open-source software and to

test hypotheses Garcia et al. (2013) . Third, since in the Android do-

main architectural recovery can be achieved accurately, it is signifi-

cantly easier to check the conformance of an app’s implementation

against its prescriptive architecture, thereby reducing the possibil-

ity of architectural erosion.

6. Discussion

Although Android’s app architecture leverages a number of ad-

vantageous design decisions, several aspects of that architecture

deviate from principles advocated in the literature, in some cases

resulting in deficiencies and limitations that deserve attention. In

this section, we attempt to shed light on some of these Android-

specific architectural smells and anti-patterns found in our study.

6.1. Inconsistent hierarchical (de)composition

In Section 4.2 , we described the three levels of hierarchical

(de)composition possible in Android: (1) at the highest-level of

granularity, each mobile device is comprised of an architecture,

where its computational elements are the apps, possibly interact-

ing with one another through one of Android’s inter-app communi-

cation mechanisms, (2) each app, in turn, has an architectural con-

figuration, consisting of the four component types and four con-

nector types discussed in Section 4.1 , and (3) at the lowest level

of granularity, Android’s Activity components may have an internal

architecture, consisting of Fragment components.

Although Android’s hierarchies provide plenty of benefits, they

have several shortcomings in the way they have been realized.

In particular, software-architecture research has advocated for re-

cursive rules of (de)composition, whereby a component can be

decomposed into lower-level components of the same type and

vice versa (Taylor et al., 2009). One benefit of such an ap-

proach, experienced in architectural frameworks, such as Prism-

MW (Malek et al., 2005), as well as composite services in SOA

(Malek et al., 20 05; Erl, 20 06), is that the same set of composition

rules can be applied at different levels of hierarchy.

On the other hand, Android provides constructs with arbitrar-

ily different structures, behaviors, and semantics at different lev-

els of hierarchy. Similarly, the rules of composition at one level are

completely different from another level. For instance, the way Frag-

ments are composed when constructing an Activity is completely
ifferent from the manner in which the four component types are

omposed when constructing an app. As another example, consider

hat while a manifest file is used to model the configuration of an

pp’s architecture, a similar concept is not made available for use

t the highest and lowest levels of granularity. These discrepancies

etween different levels of hierarchy are at best an annoyance, but

ossibly a hindrance to a developer’s ability to realize architectures

hat are better suited for a system.

.2. Extensibility limitations

In Section 4.1 , we described that Android constrains com-

onents to four specific types (i.e., Activities, S ervices, C ontent

 roviders, and B roadcast receivers) in order to achieve the pro-

ision of more uniform user interfaces, interoperability between

omponents, and a separation of concerns based on functional-

ty common to mobile systems (e.g., background services, data

tores, and UI handling). However, Android provides limited sup-

ort for building other component types that do not fit the seman-

ics of Android’s pre-defined components. For example, an Android

ame, a category of apps popular in mobile-computing ecosystems,

ould commonly include a Game Engine—but none of the four

redefined component types provide a good match, since such an

ngine should manage other components in the app and may im-

lement its own unique life-cycle.

We believe a generic Android component, similar to those

uggested in prior architecture implementation frameworks

 Malek et al., 2007), would enable developers to extend the frame-

ork with custom-built component types, while still maintaining

roperties that are important for mobile systems (e.g., efficiency

nd loose coupling).

Connectors in Android face similar extensibility limitations. No-

ably, they lack the ability to build configurations corresponding to

ertain topologies. For instance, Android lacks support for isolating

roups of components into their own layers (e.g., a layer for game-

ogic components and another layer for graphics-rendering com-

onents), where each layer is separated by a different event bus.

uch a design provides loose coupling and separation of concerns

t a granularity above Android components.

.3. Omission of architectural concepts

In Section 4.4 , we described that Android allows specification of

uilt-in components and provided interfaces (i.e., Intent Filters) in

n app’s source code or through the ADL-like manifest. However,

he ADL-like manifest of an Android app does not allow the spec-

fication of other key elements that are typically found in tradi-

ional ADLs: (1) connectors, (2) configurations resulting from inter-

onnections between components and connectors, and (3) required

nterfaces of components or connectors. The omission of these ar-

hitectural concepts in Android apps hinder architectural analysis

nd understandability of an app.

A particular selection of connectors in an app and the way

n which those connectors and the app’s components are inter-

onnected (i.e., the app’s architectural configuration) imply dif-

erent non-functional properties (e.g., high or low efficiency or

aintainability). The inability to easily obtain such information

rom a single source makes analyzing an Android app for a non-

unctional property (e.g., security), or conducting automated archi-

ectural conformance checks, significantly more challenging. More

pecifically, an engineer would need to either manually read the

ode or utilize a static or dynamic analysis to obtain such informa-

ion, either of which would be cumbersome, time-consuming, or

rror prone.

Although Android supports specification of provided interfaces

hrough Intent Filters, no analogous mechanism exists for required

H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44 41

i

c

d

t

p

t

f

a

o

n

a

6

c

T

c

t

c

n

d

a

s

i

(

b

f

s

t

r

d

c

a

a

6

d

p

t

m

a

M

t

o

s

i

(

t

a

t

m

C

d

t

S

t

d

p

c

c

7

f

S

S

i

c

n

2

G

t

f

o

a

t

t

p

c

w

t

f

s

t

i

d

a

m

a

a

s

s

g

t

e

p

r

p

e

t

o

a

o

d

p

A

s

g

l

m

o

a

b

u

p

p

c

c

s

a

m

a

nterfaces. To determine the required interfaces of an Android

omponent, Intents for implicit invocation, Content Resolvers for

ata access, and Android RPC mechanisms must be analyzed (e.g.,

hrough static analysis). Consequently, analysis of non-functional

roperties (e.g., security or maintainability) or performing archi-

ectural conformance are hindered by the hidden required inter-

aces of components, especially given the lack of mechanisms for

utomatically determining data accesses and RPCs in Android. To

btain this information, a developer may need to read code, elimi-

ating the advantages of reducing complexity through focusing on

rchitectural abstractions.

.4. Broadcast receiver’s connector envy

Broadcast Receivers poorly separate concerns, resulting in defi-

iencies that affect maintainability and efficiency (cf. Section 4.1).

his poor separation of concerns stems from the fact that Broad-

ast Receivers tend to include application-specific logic, which are

he responsibility of components, and distribute Intents to other

omponents, an application-independent concern handled by con-

ectors.

We believe that the Broadcast Receiver is best to be clearly

efined as a connector, discouraging developers of including

pplication-specific logic within such a module that by design

hould behave as a gateway to other components, a responsibil-

ty advocated to assign to connectors in the architecture literature

 Mehta et al., 20 0 0). Essentially, the Broadcast Receiver in Android

y itself can be a complicated building block, supporting three dif-

erent types of broadcast Intents, that incorporating application-

pecific logic into may make it very hard to understand. In fact,

he phenomenon, where a component acts also as a connector, is

eferred to as Connector Envy (Garcia et al., 2009), an architectural-

ecay instance that results in bloated components, reduces effi-

iency by increasing each affected component’s memory footprint,

nd renders such components more complex and less maintain-

ble.

.5. Model-view-controller anti-pattern

Another poor separation of concerns occurs due to Android’s

esign that breaks the Model-View-Controller (MVC) architectural

attern (Krasner et al., 1988; Taylor et al., 2009). In that pat-

ern, a View component provides graphical depictions of infor-

ation; a Model component contains information to be depicted;

nd a Controller component maintains consistency between the

odel and View. In Android, a Content Provider acts as a Model;

he responsibilities of the View and Controller are integrated into

ne component, an Activity (cf. Section 4.1). This violates the

ingle-responsibility design principle (Gamma et al., 1994), result-

ng in a poor separation of concerns that breaks the MVC pattern

 Sokolova et al., 2013). This design decision results in an architec-

ural anti-pattern (Brown et al., 1998), which is a recurring set of

rchitectural elements that together negatively affects the architec-

ure of a system, and renders the system more complex and less

aintainable. For example, testing the operations of the View and

ontroller in Android cannot be done separately.

We recommend separating the responsibilities of event han-

ling and interface management into distinct components, on

he basis of the Android-specific MVC architecture proposed by

okolova et al. (2013) . Architectural support for such a separa-

ion of concerns at the framework-level not only facilitates the

evelopment of less complex components and well-structured ap-

lications, but also discourages development of “bloated” Activity

omponents that suffer from increased memory footprints and de-

reased efficiency.
. Related work

Software architecture recovery techniques have been around

or over three decades (Ducasse and Pollet, 2009; Koschke,

pringer Berlin Heidelberg, 2009; Maqbool and Babri, 2007;

htern and Tzerpos, 2012). A majority of such techniques group

mplementation-level entities (e.g., files, classes, or functions) into

lusters, where each cluster represents an architectural compo-

ent (Fiutem et al., 2002; Guo et al., 1999; Tzerpos and Holt,

0 0 0; Sartipi, 20 01; 20 03; Fiutem et al., 1999). Among others,

uo et al. (1999) presented the Software Architecture Reconstruc-

ion Method (ARM), which is used to specify design patterns; the

ocus of ARM, similar to many other techniques we studied, is on

bject-oriented programming language constructs. Such constructs

re typically not considered architectural. Although they discussed

he possibility of ARM for identification of higher-level architec-

ural patterns, how this would actually be accomplished is not ex-

lained.

Different from these research efforts that extract canonical ar-

hitectural notions from low-level implementation entities, this

ork is geared towards the application of architectural recovery

echniques in the context of Android ecosystem, where a common

ramework underlying the ecosystem of apps provides extensive

upport for architectural concepts. In fact, by tracking the archi-

ectural building blocks provided by the framework and extended

n individual apps, this work studies the extent to which the An-

roid’s ecosystem of apps employs architectural concepts.

Ali and Solis (2014) proposed the use of architectural models

t runtime to support monitoring the adaptation, evolution, and

aintenance of mobile software systems. Kim (2013) also proposed

 reference architecture template for developing adaptive mobile

pps. While the focus of these research efforts is on architectural

upport for software adaptation in diverse mobile platforms, the

pecific characteristics of Android platform has not been investi-

ated in detail. They do not analyze, among other things, archi-

ectural characteristics featured in the Android framework, nor the

xtent to which real-world apps actually leverage such framework-

rovided, architectural constructs.

The other relevant line of research focuses on applications of

ecovered architecture in a variety of mobile software engineering

roblems (Bagheri et al., 2015; 2016; Mirzaei et al., 2016; Schmerl

t al., 2015). Among others, COVERT (Bagheri et al., 2015) showed

he power of software architectural abstractions for the analysis

f security properties in Android apps. It relies on both static

nalysis and formal model checking, backed with the definition

f an architecture style for analyzing security properties of An-

roid apps. Along the same line, Schmerl et al. (2015) ; 2016) pro-

osed an architecture-based approach for run-time mitigation of

ndroid Intent vulnerabilities. Joorabchi and Mesbah (2012) pre-

ented a reverse engineering technique to automatically navigate a

iven iPhone app, and to recover its architectural model at the GUI

evel. Mirzaei et al. (2016) used the recovered architecture of apps,

ainly at the GUI-level, for combinatorial, yet scalable, GUI testing

f Android apps. TrimDroid leveraged the dependencies among the

rchitectural elements comprising a given app to reduce the num-

er of combinations in generated test cases.

We share with these research effort s the common insight on

sing software architecture as a crucial means that provides a

roper level of abstraction for representing issues and modeling

roblems. Different from all prior research efforts, this work fo-

uses on studying the extent to which Android apps employ ar-

hitectural concepts in practice. To the best of our knowledge, this

tudy is the most comprehensive and elaborate investigation of the

rchitectural characteristics of Android ecosystem, supported with

ining the reverse-engineered architecture of hundreds of Android

pps in several app repositories.

42 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

C

D

D

E

E

E

F

F

F

F

F

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

H

J

K

8. Conclusion

This paper described the role of software architecture in the

design and construction of modern mobile software. Specifically,

we identified several mobile-computing drivers that motivated the

adoption of architectural principles, distilled those principles, and

traced them back to their conception in the literature. By mining

the reverse-engineered architecture of hundreds of apps, we found

that Android apps are complex, consisting of tens of components

and connectors, and often make use of multiple styles. We also

described several Android-specific architectural-decays and anti-

patterns that were identified in our study.

Since we are not aware of any other work that has conducted

a similar in-depth analysis of Android’s app architecture, we be-

lieve our work could have a significant impact on both practi-

tioners and researchers, as follows. The architectural concepts de-

scribed throughout our study could help practitioners understand

the implications of their design decisions. We found many im-

proper usages of architectural constructs and styles in the reverse-

engineered architecture of popular apps. For instance, in cases

where developers had used the message-based explicit-invocation

style to send an Intent to multiple components, it would have been

significantly more efficient and architecturally elegant to use the

publish-subscribe style for such group communication. Such archi-

tectural mistakes are due to the lack of a deeper understanding of

how design choices may affect the system’s properties. We believe

that our study also has the potential to impact the research com-

munity by demonstrating the rich body of architectural knowledge

that can be readily mined from app ecosystems, as well as shed-

ding light on the architectural principles that were adopted and

those that were deviated from in Android. In turn, we expect this

to set the stage for further research in the future.

Acknowledgment

This work was supported in part by awards CCF-1252644 from

the National Science Foundation , D11AP00282 from the Defense

Advanced Research Projects Agency , W911NF-09-1-0273 from the

Army Research Office , HSHQDC-14-C-B0040 from the Department

of Homeland Security , and FA95501610030 from the Air Force Of-

fice of Scientific Research .

References

Aldrich, J. , Chambers, C. , Notkin, D. , 2002. Archjava: connecting software architec-

ture to implementation. In: ICSE, pp. 187–197 .
Ali, N. , Solis, C. , 2014. Mobile architectures at runtime: research challenges. In: Pro-

ceedings of MOOBILESoft .
Android apktool. https://code.google.com/p/android-apktool/.

Aquilani, F., Balsamo, S., Inverardi, P., 2001. Performance analysis at the soft-
ware architectural design level. Perform. Eval. 45 (23), 147–178. doi: 10.

1016/S0166-5316(01)0 0 035-9 . http://www.sciencedirect.com/science/article/pii/

S01665316010 0 0359.
Bachmann, F. , Bass, L. , Klein, M. , 2003. Deriving architectural tactics: a step toward

methodical architectural design. Technical Report .
Bagheri, H. , Sadeghi, A. , Garcia, J. , Malek, S. , 2015. Covert: compositional analy-

sis of android inter-app permission leakage. IEEE Trans. Software Eng. 41 (9),
866–886 .

Bagheri, H. , Sadeghi, A. , Jabbarvand, R. , Malek, S. , 2016. Practical, formal synthesis

and automatic enforcement of security policies for android. In: Proceedings of
the 46th IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN) .
Bagheri, H. , Sullivan, K. , 2012. Pol: specification-driven synthesis of architectural

code frameworks for platform-based applications. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Generative Programming and Com-

ponent Engineering (GPCE’12). ACM, Dresden, Germany, pp. 93–102 .
Bass, L. , Clements, P. , Kazman, R. , 2003. Software Architectures in Practice. Addison

Wesley .

Bazaar. https://cafebazaar.ir/.
Bosch, J. , 2009. From software product lines to software ecosystems. In: Interna-

tional Software Product Line Conference,San Francisco, California, pp. 111–119 .
Brown, W.J. , McCormick, H.W. , Mowbray, T.J. , Malveau, R.C. , 1998. AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis. Wiley, New York .
hin, E. , Felt, A.P. , Greenwood, K. , Wagner, D. , 2011. Analyzing inter-application com-
munication in android. In: International Conference on Mobile Systems, Appli-

cations, and Services,New York, NY, USA, pp. 239–252 .
ashofy, E.M., Hoek, A.V.d., Taylor, R.N., 2001. A highly-extensible, xml-based ar-

chitecture description language. In: Proceedings of the Working IEEE/IFIP Con-
ference on Software Architecture. IEEE Comput. Society, Washington, DC, USA,

p. 103. doi: 10.1109/WICSA.2001.948416 . http://dx.doi.org/10.1109/WICSA.2001.
948416.

ucasse, S. , Pollet, D. , 2009. Software architecture reconstruction: a process-ori-

ented taxonomy. IEEE Trans. Softw. Eng. 35 (4), 573–591 .
Ebert, C., Jones, C., 2009. Architecture for embedded open software ecosystems.

Comput. 42, 42–52 . http://dx.doi.org/10.1109/MC.2009.118.
dwards, G., Malek, S., Medvidovic, N., 2007. Scenario-driven dynamic analysis of

distributed architectures. In: Proceedings of the 10th International Conference
on Fundamental Approaches to Software Engineering. Springer-Verlag, Berlin,

Heidelberg, pp. 125–139 . http://dl.acm.org/citation.cfm?id=1759394.1759411.

Eklund, U., Bosch, J., 2014. Architecture for embedded open software ecosystems. J.
Syst. Softw. 92, 128–142. doi: 10.1016/j.jss.2014.01.009 . http://www.sciencedirect.

com/science/article/pii/S01641212140 0 0211.
nck, W. , Octeau, D. , McDaniel, P. , Chaudhuri, S. , 2011. A study of android application

security. In: Proceedings of the 20th USENIX Conference on Security. USENIX
Association, San Francisco, CA . p. 21.

rl, T. , 2006. Service-Oriented Architecture: Concepts, Technology, and Design. Pren-

tice Hall, Upper Saddle River, NJ, USA .
eiler, P.H., Lewis, B.A., Vestal, S., 2006. The SAE architecture analysis & de-

sign language (AADL) a standard for engineering performance critical sys-
tems. IEEE, pp. 1206–1211. doi: 10.1109/CACSD-CCA-ISIC.2006.4776814 . http://

ieeexplore.ieee.org/articleDetails.jsp?arnumber=4776814.
elt, A.P. , Hanna, S. , Chin, E. , Wang, H.J. , Moshchuk, E. , 2011. Permission re-delega-

tion: attacks and defenses. In 20th Usenix Security Symposium, San Francisco,

CA .
iutem, R. , Antoniol, G. , Tonella, P. , Merlo, E. , 1999. Art: an architectural reverse en-

gineering environment. J. Softw. Maintenance 11 (5), 339–364 .
iutem, R. , Tonella, P. , Anteniol, G. , Merlo, E. , 2002. A cliche-based environment to

support architectural reverse engineering. In: Proceedings of the third Working
Conference on Reverse Engineering (WCRE), pp. 277–286 .

-droid. https://f-droid.org/ .

Gamma, E. , Helm, R. , Johnson, R. , Vlissides, J. , 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison- Wesley Professional .

arcia, J. , Ivkovic, I. , Medvidovic, N. , 2013. A comparative analysis of software archi-
tecture recovery techniques. In: International Conference on Automated Soft-

ware Engineering, Palo Alto, CA, pp. 4 86–4 96 .
arcia, J. , Popescu, D. , Safi, G. , Halfond, W. , Nenad, M. , 2009. Identifying architec-

tural bad smells. In: European Conference on Software Maintenance and Reengi-

neering, pp. 255–258 .
arlan, D. , Monroe, R.T. , Wile, D. , 20 0 0. Acme: architectural description of compo-

nent-based systems. Foundations of Component-Based Systems .
oogle, Android activity component. http://developer.android.com/guide/

components/activities.html .
oogle, Android alarm manager. http://developer.android.com/intl/ru/reference/

android/app/AlarmManager.html .
oogle, Android application fundamentals. http://developer.android.com/guide/

components/fundamentals.html .

oogle, Android broadcast receiver component. http://developer.android.com/
reference/android/content/BroadcastReceiver.html .

oogle, Android content provider component. http://developer.android.com/guide/
topics/providers/content-providers.html .

oogle, Android fragment. http://developer.android.com/reference/android/app/
Fragment.html .

oogle, Android intent. http://developer.android.com/reference/android/content/

Intent.html .
oogle, Android intent filters. http://developer.android.com/guide/topics/intents/

intents-filters.html .
oogle, Android interface definition language (aidl). http://developer.android.com/

guide/components/aidl.html .
oogle, Android service component. http://developer.android.com/guide/

components/services.html .

oogle, Android system permissions. http://developer.android.com/guide/topics/
security/permissions.html .

Guo, G. , Atlee, J. , Kazman, R. , 1999. A software architecture reconstruction method.
In: Proceedings of the third Working International Conference on Software Ar-

chitecture (WICSA) .
oogle play market. http://play.google.com/store/apps/.

ao, S. , Li, D. , Halfond, W.G. , Govindan, R. , 2013. Estimating mobile application en-

ergy consumption using program analysis. In: The International Conference on
Software Engineering .

oorabchi, M.E. , Mesbah, A. , 2012. Reverse engineering ios mobile applications. In:
Proceedings of the third Working Conference on Reverse Engineering (WCRE) .

Kim, H.-K., 2013. Architecture for adaptive mobile applications. Int. J. Bio-Sci. Bio-
Technol. 5 (5), 197–210. doi: 10.14257/ijbsbt.2013.5.5.21 . http://www.sersc.org/

journals/IJBSBT/vol5 _ no5/21.pdf.

Koschke, R. , 2009. Architecture reconstruction. In: Software Engineering. Springer,
Berlin Heidelberg, pp. 140–173 .

rasner, G.E. , Pope, S.T. , et al. , 1988. A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. J. Object Oriented Program. 1 (3),

26–49 .

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100000185
http://dx.doi.org/10.13039/100000183
http://dx.doi.org/10.13039/100000180
http://dx.doi.org/10.13039/100000181
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0002
https://code.google.com/p/android-apktool/
http://dx.doi.org/10.1016/S0166-5316(01)00035-9
http://www.sciencedirect.com/science/article/pii/S0166531601000359
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0008
https://cafebazaar.ir/
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0011
http://dx.doi.org/10.1109/WICSA.2001.948416
http://dx.doi.org/10.1109/WICSA.2001.948416
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0013
http://dx.doi.org/10.1109/MC.2009.118
http://dl.acm.org/citation.cfm?id=1759394.1759411
http://dx.doi.org/10.1016/j.jss.2014.01.009
http://www.sciencedirect.com/science/article/pii/S0164121214000211
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0018
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776814
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4776814
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0022
https://f-droid.org/
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0026
http://developer.android.com/guide/components/activities.html
http://developer.android.com/intl/ru/reference/android/app/AlarmManager.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/topics/security/permissions.html
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0027
http://play.google.com/store/apps/
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0029
http://dx.doi.org/10.14257/ijbsbt.2013.5.5.21
http://www.sersc.org/journals/IJBSBT/vol5_no5/21.pdf
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0032

H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44 43

K

L

L

M

M

M

M

M

M

M

M

N

O

O

P

S

S

S

S

S

S

S

T

T

T

V

V

W

W
W

Z

ruchten, P.B. , 1995. The 4+1 view model of architecture. IEEE Softw. 12 (6), 42–50 .
a Polla, M. , Martinelli, F. , Sgandurra, D. , 2013. A survey on security for mobile de-

vices. Commun. Surv. Tut., IEEE 15 (1), 446–471 .
uckham, D.C., Vera, J., 1995. An event-based architecture definition language. IEEE

Trans. Softw. Eng. 21 (9), 717–734. doi: 10.1109/32.464548 .
alek, S. , Mikic-Rakic, M. , Medvidovic, N. , 2005. A style-aware architectural mid-

dleware for resource-constrained, distributed systems. IEEE Trans. Softw. Eng.
31 (3), 256–272 .

alek, S. , Mikic-Rakic, M. , Medvidovic, N. , 2007. Reconceptualizing a family of het-

erogeneous embedded systems via explicit architectural support. In: ICSE. IEEE
Computer Society, Washington, DC, USA, pp. 591–601 .

anikas, K. , Hansen, K.M. , 2013. Software ecosystems - a systematic literature re-
view. J. Syst. Softw. 86 (5), 1294–1306 .

aqbool, O. , Babri, H. , 2007. Hierarchical clustering for software architecture recov-
ery. IEEE Trans. Softw. Eng. 33 (11), 759–780 .

edvidovic, N. , Mikic-Rakic, M. , Mehta, N.R. , Malek, S. , 2003. Software architectural

support for handheld computing. IEEE Comput. 36 (9), 66–73 .
edvidovic, N. , Taylor, R. , 20 0 0. A classification and comparison framework for soft-

ware architecture description languages. IEEE Trans. Softw. Eng. 26 (1), 70–93 .
ehta, N.R. , Medvidovic, N. , Phadke, S. , 20 0 0. Towards a taxonomy of software con-

nectors. In: ICSE. ACM, pp. 178–187 .
irzaei, N. , Garcia, J. , Bagheri, H. , Sadeghi, A. , Malek, S. , 2016. Reducing combina-

torics in gui testing of android applications. In: Proceedings of ICSE .

ikzad, N. , Chipara, O. , Griswold, W.G. , 2014. Ape: An annotation language and
middleware for energy-efficient mobile application development. In: ICSE,

pp. 591–601 .
reizy, P., Medvidovic, N., Taylor, R.N., 1998. Architecture-based runtime software

evolution. In: Proceedings of the 20th International Conference on Software En-
gineering. IEEE Computer Society, Kyoto, Japan, pp. 177–186 . http://portal.acm.

org/citation.cfm?id=302181.

reizy, P. , Medvidovic, N. , Taylor, R.N. , 2008. Runtime software adaptation: frame-
work, approaches, and styles. In: Companion of the 30th International Confer-

ence on Software Engineering. IEEE Comput. Soc., pp. 899–910 .
icco, G.P. , Julien, C. , Murphy, A.L. , Musolesi, M. , Roman, G.-C. , 2014. Software en-

gineering for mobility: reflecting on the past, peering into the future. In: 2014
Future of Software Engineering (FOSE’14), pp. 13–28 .

artipi, K. , 2001. Alborz: a query-based tool for software architecture recovery. In:

Proceedings of the International Workshop on Program Comprehension (IWPC) .
artipi, K. , 2003. Software architecture recovery based on pattern matching. In: Pro-
ceedings of the International Conference on Software Maintenance (ICSM) .

chmerl, B. , Gennari, J. , Camara, J. , Garlan, D. , 2016. Raindroid – a system for run–
time mitigation of android intent vulnerabilities: Poster. In: Proceedings of the

2016 Symposium and Bootcamp on the Science of Security (HotSoS’16) .
chmerl, B. , Gennari, J. , Garlan., D. , 2015. An architecture style for android security

analysis: poster. In: Proceedings of the 2015 Symposium and Bootcamp on the
Science of Security (HotSoS’15) , pp. 15:1–15:2 .

haw, M. , Garlan, D. , 1996. Software Architecture: Perspectives on an Emerging Dis-

cipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA .
htern, M. , Tzerpos, V. , 2012. Clustering methodologies for software engineering.

Adv. Softw. Eng .
okolova, K. , Lemercier, M. , Garcia, L. , 2013. Android passive mvc: a novel architec-

ture model for android application development. In: International Conference
on Pervasive Patterns and Applications .

aylor, R. , Medivodivc, N. , Dashofy, E. , 2009. Software Architecture: Foundations,

Theory, and Practice. Wiley, Hoboken, NJ, USA .
aylor, R. , Medvidovic, N. , Anderson, K.M. , James Whitehead, J.E. , Robbins, J.E. , 1996.

A component- and message-based architectural style for gui software. IEEE
Trans. Softw. Eng. 22 (6), 390–406 .

zerpos, V. , Holt, R. , 20 0 0. Acdc: an algorithm for comprehension-driven clustering.
In: Proceedings of the Working Conference on Reverse Engineering (WCRE) .

alle é-Rai, R. , Co, P. , Gagnon, E. , Hendren, L. , Lam, P. , Sundaresan, V. , 1999. Soot -

a java bytecode optimization framework. In: Conference of the Centre for Ad-
vanced Studies on Collaborative research, CASCON’99 .

inoski, S. , 1997. Corba: integrating diverse applications within distributed hetero-
geneous environments. IEEE Commun. Mag. 35 (2), 46–55 .

asserman, A. , 2010. Software engineering issues for mobile application develop-
ment. In: Proceedings of the FSE/SDP Workshop on Future of Software Engi-

neering Research (FoSER’10), pp. 397–400 .

andoujia. https://wandoujia.com/.
olf, A. , Perry, D. , 1992. Foundations for the study of software architecture. ACM

SIGSOFT Softw. Eng. Notes 17, 40–52 .
hang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B., 2013.

Vetting undesirable behaviors in android apps with permission use analysis.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Com-

munications Security. ACM, Berlin, Germany, pp. 611–622. doi: 10.1145/2508859.

2516689 .

http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0034
http://dx.doi.org/10.1109/32.464548
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0044
http://portal.acm.org/citation.cfm?id=302181
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0054
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0058
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0060
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0060
https://wandoujia.com/
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0061
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0061
http://refhub.elsevier.com/S0164-1212(16)30060-7/sbref0061
http://dx.doi.org/10.1145/2508859.2516689

44 H. Bagheri et al. / The Journal of Systems and Software 119 (2016) 31–44

epartment at University of Nebraska–Lincoln. Previously, he was a postdoctoral researcher
ine. He has also visited Massachusetts Institute of Technology as a postdoctoral research

. in Software Engineering from Sharif University of Technology, and his B.Sc. in Computer
E ngineering, and particularly in practical software analysis and synthesis using concepts

f software architecture. He has been a finalist at the ACM student research competition.
d has served on the program committee of several major conferences, and reviewed for

a B.S. in computer engineering and computer science, an M.S. in computer science, and
 Software Research, which is located at the University of California, Irvine. He conducts

, and software architecture.

at the University of California, Irvine. His research interests focus on software engineering,
essment of mobile applications. Sadeghi received the B.Sc. degree in computer (software)

echnology in 2008 and 2010, respectively. He is a member of ACM and ACM SIGSOFT.

nces at the University of California, Irvine. He is also the director of Software Engineering

a h at UCI. Previously he was an Associate Professor in the Computer Science Department
a uter Science from the University of California, Irvine, and the MS and Ph.D. degrees in

interests are in the field of software engineering, and to date his focus has spanned the
re analysis and testing. He has received numerous awards for his research contributions,

earcher/Scholar/Creator award, and the GMU Computer Science Department Outstanding

sity of Southern California. Medvidovi ́c is the founding Director of the SoftArch Laboratory

Engineering. Medvidovi ́c is currently serving as Chair of ACM’s Special Interest Group for
tte for the International Conference on Software Engineering (ICSE). He was the program

or of several journals. Medvidovi ́c is a recipient of the U.S. National Science Foundation

 Award, and the USC Mellon Mentoring Award. He is a co-author of the ICSE 1998 paper
f a textbook on software architectures. Medvidovi is an ACM Distinguished Scientist and
Hamid Bagheri is an Assistant Professor in the Computer Science and Engineering D
in the School of Information and Computer Sciences at University of California, Irv

fellow. He received his Ph.D. in Computer Science from University of Virginia, a M.Sc
ngineering from University of Tehran. Hamid is broadly interested in software e

rom fields like formal methods, program analysis, model-driven development, and
His publications in several conferences have been recognized as best papers. Hami

multiple journals. He is a member of ACM and IEEE.

Joshua Garcia received three degrees from the University of Southern California:
a Ph.D. in computer science. He is an assistant project scientist at the Institute for

research in software engineering with a focus on software security, software testing

Alireza Sadeghi is a Ph.D. candidate in the Department of Informatics of ICS School
specifically, application of program analysis in security and energy consumption ass

engineering and M.Sc. degree in information technology from Sharif University of T

Sam Malek is an associate professor in the School of Information and Computer Scie

nd Analysis Laboratory and a faculty member of the Institute for Software Researc
t George Mason University. He received the B.S. degree in Information and Comp

Computer Science from the University of Southern California. His general research
areas of software architecture, autonomic computing, software security, and softwa

including the U.S. National Science Foundation CAREER award, GMU Emerging Res
Faculty Research award. He is a member of the ACM, ACM SIGSOFT, and IEEE.

Nenad Medvidovi ć is a professor in the Computer Science Department at the Univer

at USC. Previously he served as Director of USC’s Center for Systems and Software
Software Engineering (SIGSOFT) and was until recently chair of the Steering Commi

chair of several conferences, including ICSE 2011, and has served as associate edit

CAREER award, the Okawa Foundation Research Grant, the IBM Real-Time Innovation
that was recognized as that conference’s Most Influential Paper. He is a co-author o

an IEEE Fellow.

	Software architectural principles in contemporary mobile software: from conception to practice
	1 Introduction
	2 Mobile computing drivers
	3 Running example
	4 Architectural principles in Android
	4.1 Software architecture building blocks
	4.2 Hierarchical (de)composition
	4.3 Architectural design styles
	4.4 Software architecture models
	4.5 Architecture implementation and deployment
	4.6 Architectural support for non-functional properties

	5 Architectural characteristics of Android ecosystem
	6 Discussion
	6.1 Inconsistent hierarchical (de)composition
	6.2 Extensibility limitations
	6.3 Omission of architectural concepts
	6.4 Broadcast receiver’s connector envy
	6.5 Model-view-controller anti-pattern

	7 Related work
	8 Conclusion
	 Acknowledgment
	 References

