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A B S T R A C T

Software architecture has been shown to provide an appropriate level of granularity for representation of a
managed software system and reasoning about the impact of adaptation choices on its properties. Software
architecture-based adaptability is the ability to adapt a software system in terms of its architectural elements,
such as its components and their interfaces. Despite its promise, architecture-based adaptation has remained
largely elusive, mainly because it involves heavy engineering effort of making non-trivial changes to the
manner in which a software system is implemented. In this paper, we present Acadia—a framework that
automatically enables architecture-based adaptation of practically any Java 9+ application without requiring
any changes to the implementation of the application itself. Acadia builds on the Java Platform Module System
(JPMS), which has brought extensive support for architecture-based development to Java 9 and subsequent
versions. Acadia extends JPMS with the ability to provide and maintain a representation of an application’s
architecture and make changes to it at runtime. The results of our experimental evaluation, conducted on three
large open-source Java applications, indicate that Acadia is able to efficiently apply dynamic changes to the
architecture of these applications without requiring any changes to their implementation.
. Introduction

Development of (self-)adaptive software systems is known to be
ignificantly more complex than that of non-adaptive systems [1].
onventional wisdom in software engineering suggests that a soft-
are system’s architecture provides an appropriate level of abstrac-

ion to mitigate the complexity of adaptive systems [2–6]. A software
ystem’s architecture represents the elements comprising the system
e.g., components, connectors, interfaces) and their relationships to
ne another [7]. Architecture-based adaptability is thus the ability to
aintain an accurate representation of a software system’s architecture

t runtime and effect adaption choices in terms of its architectural
lements (e.g., (un)load components).

While the research community has produced many frameworks
or architecture-based adaptation (e.g., Rainbow [8], C2 [9], Dar-
in [10,11], ArchJava [12], and Prism-MW [13]), architecture-based
daptation has remained largely elusive in industry. The existing
rchitecture-based adaptation frameworks require the managed soft-
are to be designed and developed specifically for adaptation on top of

hose frameworks. Case in point, in ArchJava [12], developers would
eed to implement Java applications using syntax that is specific to
rchJava. For example, an ArchJava’s component is defined using the

‘component’’ keyword before class declaration (public component
lass nameOfClassHere), while a component’s interfaces are defined
sing the ‘‘port’’ keyword before method declaration (public port

∗ Corresponding author.
E-mail addresses: negargh@uci.edu (N. Ghorbani), joshug4@uci.edu (J. Garcia), malek@uci.edu (S. Malek).

nameOfMethodHere). Despite their elegance, the above-mentioned
frameworks are not used for architecture-based adaptation of real-
world software, as developers do not build their systems on top of these
framework.

Indeed, the majority of real-world software is not developed ar-
chitecturally. Widely-used programming languages and frameworks do
not provide explicit support for architectural concepts. In other words,
there is a gap between architectural constructs (e.g., components,
connectors, interfaces) used to conceptualize the architecture of a sys-
tem and the low-level programming constructs (e.g., classes, methods,
variables) used for their implementation. A system that is not developed
architecturally is practically impossible to adapt without a significant
engineering effort. At a minimum, developers have to recover what
parts of the code map to architecturally relevant elements, develop
the ability to dynamically (un)load and (un)bind those elements, and
further implement the necessary facilities to keep that representation
of the software in sync with the running system.

These difficulties have also impacted software engineering re-
searchers that have struggled with the lack of real-world adaptive
software for proper evaluation of their techniques. Researchers have
responded to this problem by developing a repository of exemplar
adaptive applications to help with validation of their work [14]. The
majority of these exemplars, however, are essentially still toy applica-
tions. Indeed, to this date, the majority of publications in this domain,
ttps://doi.org/10.1016/j.infsof.2024.107550
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including those of the authors, evaluate the reported techniques on ei-
ther small, handcrafted applications or simulated environments. There
are no effective means of comparing the techniques on the same set
of real-world applications, similar to the manner researchers evaluate
their work in other areas of software engineering, for instance software
testing. The lack of access to real-world software readily available for
experimentation has truly hindered research in this area.

Inspired by relatively recent developments in Java, which for the
first time has incorporated extensive support for architecture-based
development, we believe the software engineering community is finally
at the cusp of realizing architecture-based adaptation without requir-
ing the developers to implement their systems on top of a separate
framework for architecture-based adaptation. In its 9th iteration, Java
has introduced the Java Platform Module System (JPMS) [15], which
allows developers to explicitly specify the system’s software compo-
nents (i.e., modules in JPMS), their interfaces, and the specific nature
of their dependencies in a file called module-info.java.1 JPMS
creates opportunities for building adaptive software systems in ways
that were not possible before. Specifically, the architectural elements
of any Java application built in Java 9 and subsequent versions are
readily attainable from its module-info.java file.2

Despite its support for architecture-based development, JPMS does
not provide a mechanism for maintaining a runtime model of the
system’s architecture and modifying it at runtime. Accordingly, JPMS
by itself is lacking support for architecture-based adaptation of Java
applications. In this paper, we present Acadia, a framework that allows
for any Java 9+ software system to be adapted architecturally. Aca-
ia leverages JPMS features and static analysis to (1) determine the
rchitecture of Java applications and (2) automatically transform the
pplications to a form that can be adapted at runtime. Using Acadia,
evelopers can determine or update their Java applications’ architec-
ure at runtime without requiring any additional implementation or
ny modification to their applications. Moreover, Acadia is extremely
fficient, enabling developers to execute various adaptation strategies
ith very low overhead.
Acadia offers profound and practical contributions to the software

ngineering research community by enabling the evaluation of the
eveloped techniques on hundreds of open-source Java 9+ applications
ith minimal effort. Researchers can further empirically compare their

echniques and replicate prior studies on the same set of real-world,
daptive software, thereby advancing the research in this area. An
mplementation of the proposed technique is publicly available [16].

The remainder of this paper is organized as follows. Section 2
rovides background on the Java module system. Section 3 describes
cadia and its implementation in detail. Section 4 demonstrates an
pplication of Acadia in terms of an example adaptation strategy built
pon it. Section 5 presents the experimental evaluation of Acadia’s

adaptation capabilities. The paper concludes with an outline of related
research.

2. Architecture-based development in Java

In this section, we first introduce the concepts behind the Java
Platform Module System (JPMS) [15], followed by the description of
an illustrative example used throughout the paper for explanation of
our work.

2.1. Java platform module system

JPMS allows software developers to specify the architecture of Java
applications in terms of software components, component interfaces,

1 Unfortunately the notion of software connector is still not explicit in
PMS.

2 We may refer to Java 9 and subsequent versions as Java 9+ in this paper.
2 
Fig. 1. An example Java app implemented using JPMS.

and dependencies among the application’s components. A Java module
in JPMS represents a software component, and it is a uniquely named
reusable group of related packages and resources.

The main goals of modular development in JPMS include reliable
configuration, strong encapsulation, scalability, platform integrity, and
improved performance [17]. JPMS enables developers to explicitly
specify module interfaces and dependencies. In other words, devel-
opers can identify the public and private members of a module that
are accessible or inaccessible to other modules. The more refined
accessibility control in JPMS significantly increases Java applications’
encapsulation. Furthermore, Java has modularized the JDK itself using
JPMS modules. As a result, developers can create lightweight custom
Java Runtime Environment (JRE) images consisting of only modules
they need for their application, which improves the scalability and
performance of Java applications [18].

Each Java module includes a module descriptor file specifying the
module’s interfaces and dependencies to other modules. Specifically,
the descriptor file, called module-info.java, includes the module
name, other modules it depends on, the packages it explicitly makes
available to other modules, the services it offers, the services it con-
sumes, and to what other modules it allows reflection [17]. A module
can utilize combinations of the following five module directives to
describe the details of its interfaces and dependencies: (1) the requires
directive, which specifies other modules a module needs access to,
(2) the exports directive, which makes public members of a package
accessible by other modules, (3) the opens directive, which opens public
and private members of a package to reflective access by other modules,
(4) the provides directive, which specifies the services a module pro-
vides, and (5) the uses directive, which specifies the services a module
uses [19].

2.2. Illustrative example

Fig. 1 illustrates an example Java application modularized using
JPMS. It consists of three modules User, Util, and Network. Each
module’s descriptor file, i.e., module-info.java, is shown in the
figure. Accordingly, module User contains two packages, foo and bar,
and reads modules Util and Network in its implementation, specified
by requires directives. Module Util contains two packages, core
and api. It reads module Network in its implementation, specified by

requires directive, and uses the service NetService, specified by
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Fig. 2. A high-level overview of Acadia framework.
uses directive. Module Util also exposes its core and api packages to
be accessible by other modules, using exports directives, and opens
its core package specifically for reflective access to the module User,
using opens directive. Module Network contains a package, called net,
and provides an implementation of the service NetService in one of its
classes, called NetClass, which is specified by provides directive.

These directives outline an overview of the dependencies between
the system’s modules and their packages. Fig. 1 shows these depen-
dencies with arrows. More specifically, package foo in module User
accesses internals of packages bar, core, and net in its implementation. It
also reflectively accesses private members of package core. Package bar
accesses the internals of package api. Package core accesses internals of
package net and uses the service package net provides. Package api uses
the external library LogLib and uses the service provided by package net.

3. Acadia

Fig. 2 depicts a high-level overview of Acadia consisting of three
main compartments: Acadia API, Static Analyzer, and Runtime Controller.
In this section, we describe how Acadia enables architecture-based
adaptation capabilities in Java 9+ applications by explaining each
compartment’s implementation.

3.1. Acadia’s API

Acadia takes a Java 9+ application’s source code as input and
provides a specific API with a set of commands usable by an adaptation
strategy or software developer. The adaptation strategy is denoted by
Managing Subsystem in Fig. 2.3 More specifically, Acadia can execute
various architecture-based adaptation operations on the running Java
system, denoted by Managed Subsystem in Fig. 2. These operations
include applying dynamic changes to the running system, obtaining an
accurate architectural model of the system at runtime, or visualizing it
at any time during the execution of software.

Table 1 shows Acadia’s API, represented as a predefined set of
commands. These commands can be grouped into five categories: (1)

3 We have followed the terminology used in several prior (self-)adaptation
publications (e.g., [20,21]) that view an adaptive system to be consisting
of two subsystems: a managed subsystem that provides the core features and
functionalities for solving the domain problems, and a managing subsystem that
observes the managed subsystem and effects adaptation decisions to satisfy
certain goals.
3 
commands for loading and unloading of modules, i.e., load, load-
all, and unload, (2) a command for statically analyzing a new
module to obtain its architecturally-relevant properties, i.e., static-
analyzer, (3) commands for modification of dependencies, i.e., add-
requires, add-exports, and add-opens, (4) commands for
retrieving a system’s dynamic architectural model, i.e., get-arch-
model, get-dependent, and list-all-loaded-modules, and
(5) a command for visualization of the system’s dynamic architec-
ture for human perception, i.e., visualize. Each category of API
commands are implemented by specific components in the Runtime
Controller compartment, as elaborated further in Section 3.3.

3.2. Static Analyzer

Before running the target Java application, Acadia performs a set
of static analyses on the application’s source code to acquire the
necessary information about its implementation. Acadia relies on an
existing static analysis approach, represented as Package Dependency
Analyzer in Fig. 2, to identify the dependencies between all packages of
a Java application. We leveraged Classycle [22] in the implementation
of Acadia. More specifically, Acadia retrieves all package dependencies
implemented in each Java module by running Classycle before starting
the application. Although Classycle collects all information about the
system dependencies at both the class level and package level, Acadia
only requires the package-level dependencies, since module directives
can only define and manage dependencies between packages.

A Java application might contain packages that reflectively access
one another, indicating dependencies of type opens directive. This type
of reflective dependencies cannot be retrieved by Package Dependency
Analyzer. For this purpose, we implemented a custom static analysis,
using the Soot framework [23], represented as Reflective Dependency
Analyzer in Fig. 2. It analyzes the source code of the Java app and
extracts all instances of reflective dependencies [24]. Fig. 3 shows an
example of a reflective invocation in Java. A reflective invocation first
obtains a private class of interest (line 2), followed by selecting one of
the class’s methods using its name and parameters (lines 3–6). It finally
invokes the selected method (line 7). The Reflective Dependency Analyzer
component uses a backward static analysis and follows the use-def
chain of any java.lang.reflect.Method instances to identify all
reflective invocations in the source code. It then collects all the selected
class and method information in the reflective invocation.

Java applications can contain implementations of service providers
using ServiceLoader API, which indicates the dependencies of

types provides and uses directives. Fig. 4 shows an example of a service
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Table 1
Commands describing Acadia’s API.

Command Description

load <moduleName> <path> Loads the module moduleName from the path
path.

load-all <path> Loads all modules of the Java application from
the path path.

unload <moduleName>
<path>

Unloads the module moduleName from the path
path.

static-analyzer
<moduleName> <path>

Runs the Static Analyzer on a new module,
moduleName from path path, to retrieve and
store its package dependencies.

add-requires <source>
<target>

Makes module target accessible by module
source through a requires directive.

add-exports <source>
<pckg> <target>

Makes the package pckg from the module
source accessible to the module target through
an exports directive.

add-opens <source> <pckg>
<target>

Makes the package <pckg> from the module
<source> accessible via reflection to the
module <target> through an opens directive.

get-arch-model Generates the real-time architecture model of
the Java app in terms of a graph
representation, characterized by different types
of dependencies.

get-dependent <Module>
[<pckg>]

Retrieves a subset of the architecture model
including the packages and modules that are
dependent on the module Module and package
pckg, characterized by different types of
dependencies.

list-all-loaded-
modules

Lists all deployed modules at anytime of the
runtime.

visualize Visualizes the architecture graph of the system
in a figure for human perception.

stop Stops the Acadia’s framework and quits.

Fig. 3. An example of a reflective dependency in Java.

ependency in Java [25] obtained from Java documentation [26]. In
his example, CodecSet is a service class providing two function-
lities: getEncoder and getDecoder. Here, ServiceConsumer
s a class that aims to consume these functionalities. It uses Ser-
viceLoader, a built-in Java class, to load the provider classes of the
corresponding service (line 6). It then iterates over possible provider
classes and chooses appropriate ones with the getEncoder method
(lines 8–10). To identify such dependencies, we developed another
custom static analysis, using the Soot framework [23], shown as Service
Dependency Analyzer in Fig. 2. It analyzes the source code of the Java
application, leverages a backward analysis, and follows the use-def
chain of any instances of the ServiceLoader class [24].

The collected information from Package Dependency Analyzer, Reflec-
ive Dependency Analyzer, and Service Dependency Analyzer components
s stored in Module Dependency Model, i.e., a database component,
hich is later used by the Runtime Controller compartment. More

pecifically, the Module Dependency Model database stores the class-
evel and package-level dependencies of the managed subsystem in

erms of mappings between them. In addition, the Module Dependency m

4 
Fig. 4. An example of service dependency in Java.

Fig. 5. A simplified code snippet including the implementation of a wrapper using
java.lang.ModuleLayer in JPMS.

Model database can change. If the Managing Subsystem introduces a
new module at runtime, for which the module dependency information
is not available, it can use the static-analyzer command (recall
Table 1) to invoke the Static Analyzer, extract that information, and
update the Module Dependency Model.

3.3. Runtime Controller

The Runtime Controller compartment is responsible for the imple-
entation of Acadia’s runtime API, listed in Table 1. In the remainder

of this section, we explain the implementation details of each category
of API commands.

The Module Loader component is responsible for loading and un-
loading modules at runtime, i.e., load, load-all, or unload
commands. In case of loading a module into a running system, Module
oader component creates a module wrapper, i.e., a graph of coherent
odules representing the module itself and other modules or libraries it
epends on. Upon loading a new module, that module and all unloaded
odules that it depends on are loaded into a new wrapper. The wrapper

s implemented using java.lang.ModuleLayer class in JPMS [27],
hich defines a group of modules in the Java virtual machine (JVM).
ig. 5 shows a simplified code snippet of a module wrapper’s imple-
entation that uses JPMS built-in classes. More specifically, to create
wrapper, a ModuleLayer is initiated followed by loading the target

odule and its required libraries into the ModuleLayer.
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When starting a Java application, the Java runtime creates an initial
layer called boot layer. The boot layer contains the module graph of
resolved modules provided when running the Java application. Later,
new ModuleLayers can be defined to deploy other new modules
inside them. A Java application can include multiple layers during its
execution, and layers themselves can have dependencies amongst each
other [28]. The java.lang.ModuleLayer class is only an imple-
mentation for a group of Java modules. Whenever a ModuleLayer is
created, JVM assigns a new instance of ClassLoader to that layer
which enables loading a new module at runtime. Our evaluation (see
Section 5) will demonstrate that the performance cost or overhead of
using our wrapper implemented using ModuleLayer is small and
practical.

After creating the wrapper, Module Loader determines the de-
endent modules and libraries using the Module Dependency Model
atabase. Then, it invokes Wrapper Controller, which is responsible for
anaging all of the created wrappers in the running system, to register

he recently created wrapper. More specifically, once a wrapper is
reated, Wrapper Controller notifies the JVM about the classes that may
e loaded from the modules inside that wrapper, such that JVM knows
o which module each loaded class belongs. Wrappers can also have
ependencies amongst each other in cases where a module required
nside a wrapper is previously loaded into another wrapper. Lastly, the
ibrary Resolver component loads the required external libraries inside
he wrapper. At this point, Module Loader can load the target module
nd its dependent modules into the Managed Subsystem. To unload
module, Module Loader identifies the target module’s dependent
odules and libraries. i.e., modules that are only used by the target
odule. Subsequently, the Wrapper Controller locates the module’s

orresponding wrapper and removes it.
To better explain the loading or unloading process of a module, we

se the Java application introduced in Section 2.2. Consider a scenario
n which the Managed Subsystem first starts with no Java modules
oaded. Therefore, the Java runtime starts with the boot layer consisting
f the necessary JDK modules. Suppose the Managing Subsystem enters
he command to load module Util. To that end, Module Loader retrieves
ts dependent modules and libraries, i.e., Network and LogLib library. It
hen creates a new wrapper (Wrapper 1) and loads the Util and Network
odules into it. Next, Wrapper Controller registers the recently created
rapper and notifies the JVM. Before loading the entire wrapper into

he JVM, Library Resolver loads the external library LogLib from the
rovided path. Finally, Module Loader loads the entire wrapper into the
anaged Subsystem.

Next, suppose the Managing Subsystem enters the command to load
odule User. Consequently, Module Loader determines that the User
odule is dependent on modules Util and Network using the Module
ependency Model. As a result, Module Loader creates a new wrapper

Wrapper 2) and loads module User into it, and Wrapper Controller
egisters it by notifying the JVM. There is no need to load the depen-
ent modules since they are already loaded into Wrapper 1. Instead,
rapper Controller creates a dependency from Wrapper 2 to Wrapper

. Fig. 6 shows the Managed Subsystem after Acadia has loaded all of
he modules of this example within two wrappers. Later, suppose the
anaging Subsystem decides to unload the User module. As a result, the
odule Loader and Wrapper Controller components respectively unload

User and delete Wrapper 2, as it contains no other modules.
The Architecture Model Analyzer component listens to Module Loader

or the input commands regarding dependency modifications for any
changes to the architecture of the system. It uses the Module Dependency
Model database to create the system’s Dynamic Architecture Model and
keep it updated. Note that Module Dependency Model is a database
that stores static dependencies of the managed system. In contrast, the
Dynamic Architecture Model is responsible for capturing the dynamic
architecture of the managed system. In other words, the Module De-
pendency Model contains a superset of all dependencies, as opposed to

an architectural description model. {

5 
Fig. 6. The managed subsystem after loading all the example app’s modules (Section
2.2).

The dynamic architecture model of the system should capture all
its modules, packages, and all types of their dependencies. It can be
modeled using a graph where the system’s modules and packages are
represented as graph nodes and their dependencies as graph edges.
However, there are different types of dependencies between pack-
ages and modules, specified by various module directives in JPMS.
Therefore, the dynamic architecture cannot be modeled with a single
graph, as there might be more than one edge between two nodes. For
this purpose, we leverage the concept of multidimensional networks for
modeling graphs with different types of edges [29]. In the context
of our architectural model, there are five different types of edges:
the Containment edge between package nodes and their corresponding
module nodes, the Module Access specified with requires directives
etween module nodes, the Package Access specified with exports di-
ectives and the package dependencies in the system’s implementation,
he Reflective Access specified with opens directives and the reflective
ependencies in the system’s implementation, and the Service Access
pecified with provides and uses directives between packages.

efinition 1. The dynamic architecture model of the
anaged subsystem can be formally specified as a triple
𝑦𝑛𝑎𝑚𝑖𝑐_𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒_𝑀𝑜𝑑𝑒𝑙 ≡ ⟨𝑉 , 𝐷, 𝐸⟩, where

• 𝑉 is the set of nodes including the loaded Java modules, all their
packages, and the external libraries,

• 𝐷 = {𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡,𝑀𝑜𝑑𝑢𝑙𝑒𝐴𝑐𝑐𝑒𝑠𝑠, 𝑃 𝑎𝑐𝑘𝑎𝑔𝑒𝐴𝑐𝑐𝑒𝑠𝑠,
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝐴𝑐𝑐𝑒𝑠𝑠, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑐𝑐𝑒𝑠𝑠} is the set of dimensions speci-
fying different types of dependencies between the nodes,

• 𝐸 = {(𝑢, 𝑣, 𝑑)|𝑢, 𝑣 ∈ 𝑉 ∧𝑑 ∈ 𝐷} is the set of dependencies between
the nodes.

Fig. 7 demonstrates the multidimensional network representation
f the architectural model of our illustrative example application,
xplained in Section 2.2, after loading all of its modules. As shown in
he figure, there might be more than one edge between two nodes in a
ultidimensional network.

The Architecture Model Analyzer is responsible for generating and
pdating the architectural model upon the occurrence of any changes
o the architecture of the Managed Subsystem by adding or removing
odes or edges, as a result of (un)loading modules and modifications to
heir dependencies. In the case of get-dependent command, Acadia
eeds to identify the dependent modules and packages to a specific
odule or package. To that end, Architecture Model Analyzer defines

his search as a connected component search problem in the context of
multidimensional network [29]. In other words, the dependent nodes
u) on a specific node v in a specific set of dimensions can be formally
pecified, as shown in Eq. (1).

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑁𝑜𝑑𝑒𝑠(𝑣,𝐷) ≡
(1)
𝑣 ∈ 𝑉 ∣ ∃(𝑢, 𝑣, 𝑑) ∈ 𝐸 ∧ 𝑑 ∈ 𝐷}
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Fig. 7. The multidimensional network representing the dynamic architecture model of
the illustrative example in Section 2.2 after loading all modules.

The Graph Generator component returns the architectural model of
the system in response to get-arch-model command. To that end,
the Graph Generator converts the multidimensional network represen-
tation of the system’s architectural model to a graph description file
in DOT language [30], i.e., a widely-used graph description language.
Furthermore, in the case of the visualize command, it uses visu-
alization libraries, such as Graphviz [31], to visualize the generated
graph in DOT language for human perception.

4. Application of acadia

Kramer and Magee have defined an influential reference architec-
ture model for self-adaptive systems [32] consisting of three layers:
Component Control, Change Management, and Goal Management. The
ottom layer is Component Control, which provides the operations for
aking changes to the managed software. The middle layer is Change
anagement, which provides sequencing to ensure changes are applied

n a manner that does not jeopardize the integrity of the system. The
op layer is Goal Management, which provides the adaptation logic
f determining what changes, if any, should be made to the managed
ystem to satisfy certain objectives.

From the perspective of this three-layer reference architecture, Aca-
ia’s contribution is in the Component Control layer in that it provides
upport for effecting changes to a Java 9+ software system without

requiring any changes to its implementation. Acadia can be used in
the construction of different (self-)adaptive systems in Java. In fact,
Acadia is completely independent of the Change Management and Goal
Management capabilities that are implemented on top of it. However,
to showcase and evaluate Acadia, we needed actual functioning (self-
)adaptive software systems to validate our claims that (1) Acadia can
be used to adapt Java 9+ software systems without requiring changes
to their implementation, and (2) measure the overhead imposed by the
use Acadia in such systems. To that end, we used Acadia to develop an
exemplary self-adaptation logic aimed at keeping the memory usage
of Java 9+ applications below a user-provided threshold. Memory
efficiency is particularly critical for the deployment of Java-based
applications on resource-constrained devices, e.g., embedded and IoT
devices.

While the application is running, the adaptation logic monitors its
runtime memory usage. Once it gets larger than a predefined threshold,
it attempts to reduce the system’s memory footprint by either (1)
offloading unnecessary modules, i.e., application modules that are not
being used at the moment, or (2) replacing some modules with their al-
ternative memory-efficient versions, if available.4 Later, if a previously

4 It is often possible to realize a given functionality with different degrees
f memory consumption based on the implementation choices involving data
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offloaded or replaced module is needed again, the adaptation com-
ponent reloads it using the framework. The details of this adaptation
strategy are presented in Algorithm 1. It uses Acadia’s API commands
to execute its adaptation operations. Note that the adaptation strategy
explained in Algorithm 1 is not a built-in strategy and is solely defined
as an example to showcase Acadia’s adaptation capabilities.

Algorithm 1: Adaptation Strategy
Input: 𝐴𝑝𝑝 // The Java Application to run
Input: 𝑀𝑒𝑚𝑜𝑟𝑦𝑇ℎ𝑜𝑙𝑑 // Memory size threshold

1 while app.thread.isAlive() do
2 if getRuntimeMemory() > 𝑀𝑒𝑚𝑜𝑟𝑦𝑇ℎ𝑜𝑙𝑑 then
3 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ← getModules(𝑎𝑝𝑝.𝑡ℎ𝑟𝑒𝑎𝑑.𝑔𝑒𝑡𝑆𝑡𝑎𝑐𝑘𝑇 𝑟𝑎𝑐𝑒())
4 foreach 𝑚𝑜𝑑𝑢𝑙𝑒 ∈ 𝐴𝑝𝑝.𝑙𝑜𝑎𝑑𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠() do
5 if 𝑚𝑜𝑑𝑢𝑙𝑒 ∉ 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒𝑠 and

𝐴𝐶𝐴𝐷𝐼𝐴.𝑔𝑒𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡(𝑚𝑜𝑑𝑢𝑙𝑒) ∉ 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒𝑠 then
6 ACADIA.unload(𝑚𝑜𝑑𝑢𝑙𝑒)
7 end
8 if 𝑚𝑜𝑑𝑢𝑙𝑒.𝑖𝑠𝐿𝑜𝑎𝑑𝑒𝑑() and hasReplacement(𝑚𝑜𝑑𝑢𝑙𝑒) then
9 𝑁𝑒𝑤𝑀𝑜𝑑𝑢𝑙𝑒 ← 𝑚𝑜𝑑𝑢𝑙𝑒.𝑔𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡()
10 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ← ACADIA.getDependent(𝑚𝑜𝑑𝑢𝑙𝑒)
11 ACADIA.load(𝑁𝑒𝑤𝑀𝑜𝑑𝑢𝑙𝑒)
12 ACADIA.updateDependencies(𝑚𝑜𝑑𝑢𝑙𝑒,

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑀𝑜𝑑𝑢𝑙𝑒𝑠, 𝑁𝑒𝑤𝑀𝑜𝑑𝑢𝑙𝑒)
13 ACADIA.unload(𝑚𝑜𝑑𝑢𝑙𝑒)
14 end
15 if getRuntimeMemory() < 𝑀𝑒𝑚𝑜𝑟𝑦𝑇ℎ𝑜𝑙𝑑 then
16 Break
17 end
18 end
19 end
20 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ← getModules(𝑎𝑝𝑝.𝑡ℎ𝑟𝑒𝑎𝑑.𝑔𝑒𝑡𝑆𝑡𝑎𝑐𝑘𝑇 𝑟𝑎𝑐𝑒())
21 if 𝐴𝑝𝑝.𝑙𝑜𝑎𝑑𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ≠ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠 then
22 ACADIA.load(𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠 - 𝐴𝑝𝑝.𝑙𝑜𝑎𝑑𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠())
23 end
24 end

Algorithm 1 takes the Java application (𝐴𝑝𝑝) and the user-defined
memory threshold (𝑀𝑒𝑚𝑜𝑟𝑦𝑇ℎ𝑜𝑙𝑑) as inputs. While the app is running,
it continuously monitors the app’s memory usage, and if it goes above
the threshold, it applies the proper adaptation strategies aimed at
reducing its memory usage. More specifically, whenever the runtime
memory size gets larger than the predefined threshold MemoryThold,
Algorithm 1 first retrieves the list of running methods using the stack
trace of the app’s running thread, and consequently, obtains the list of
modules being used and loaded stores it in 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑀𝑜𝑑𝑢𝑙𝑒𝑠 (line 3).

hen, for each loaded module, the algorithm attempts to either offload
r replace it to reduce the runtime memory size (lines 4–18). Trying
o offload the module, Algorithm 1 checks whether the module can
e offloaded safely. In other words, it checks if the target module is
ot currently running. Algorithm 1 also uses Acadia’s get-dependent
ommand to retrieve the modules dependent on the target module and
nsures none of them are among the running modules at the moment
line 5). If true, the algorithm offloads the target module using Acadia’s
nload command (line 6).

However, in case the target module is being used and cannot be
ffloaded, Algorithm 1 tries to replace the target module with its
emory-efficient version, if any (line 8). For this purpose, the module’s

eplacement is stored in 𝑁𝑒𝑤𝑀𝑜𝑑𝑢𝑙𝑒 (line 9). Moreover, the algorithm

structures (e.g., arrays vs. vectors vs. linked lists), storage locations (e.g., ran-
dom access memory vs. hard drive), and algorithms. Of course, such choices
may also affect other quality attributes, e.g., execution speed. For the sake of
simplicity, we did not take into account the effect of adaptation choices on
other quality attributes.
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uses Acadia’s get-dependent command and obtains the list of mod-
ules dependent on the target module (line 10). These dependencies
should be updated to reflect the 𝑁𝑒𝑤𝑀𝑜𝑑𝑢𝑙𝑒. Therefore, Algorithm
1 first loads the new module using Acadia’s load command (line
11) and then modifies the other dependent modules’ dependencies to
require, export, or open their packages to the new module accordingly
(line 12). To that end, the 𝑢𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 method calls Acadia’s
add-requires, add-exports, or add-opens commands where
applicable. At this point, Acadia can safely offload the old version of
the module as it is no longer used (line 13).

After each module is considered for offloading and replacement,
the algorithm evaluates whether the runtime memory footprint of the
application is less than the MemoryThold, and if so, it stops considering
the other modules (lines 15–17). If the application requires a previously
offloaded module for its execution, the algorithm retrieves the list of
required modules using the stack trace of the app’s thread again and
stores it in 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑜𝑑𝑢𝑙𝑒𝑠 (line 20). If any of these required modules
are not loaded (line 21), the algorithm uses Acadia’s load command
to load them (line 22) and eventually terminates when the application
thread stops.

The adaptation strategy described here is only applicable to stateless
modules. It does not have a mechanism to guarantee the application
does not fall into an inconsistent state when modules are stateful. Our
adaptation strategy can be extended to support stateful modules by
implementing one of the existing solutions described in the literature,
such as Quiescence [33], Tranquility [34], or even our own work called
Savasana [35]. Such techniques can be used to ensure adaptations do
not result in application inconsistencies when the modules are stateful.

5. Evaluation

Our evaluation considers the following research questions:

RQ1: How successful is Acadia in adapting real-world Java 9+ appli-
cations without requiring changes to the manner in which they are
implemented?

RQ2: What is Acadia’s execution time overhead?

RQ3: To what extent does Acadia impose an overhead on Java 9+
applications’ execution time?

To answer these questions, we selected three large non-trivial
open-source Java 9+ applications from GitHub [36]. Using these appli-
cations, we designed an experiment in which we execute the adaptation
strategy explained in Section 4 on a MacBook Pro 2013 (2.3 GHz Intel
Core i7, 16 GB, MacOS 10.14). In this section, we first introduce the
selected Java applications and describe their architecture in detail. We
then discuss the mentioned research questions and present the details
of the experiments’ results.

5.1. Subject applications

To examine the objectives of Acadia, we used three different
open-source Java applications on GitHub [36], namely Quasar [37],
Tascalate JavaFlow [38], and Rhizomatic [39]. Each subject appli-
cation contains multiple Java modules that can be utilized in many
example scenarios. In this experiment, we used the example scenarios
(use cases) officially introduced by the applications’ developers to
ensure they truly reflect real-world usages of these applications.

The first application, Quasar [40] provides asynchronous program-
ming tools for Java and Kotlin and consists of 4 modules and 33
packages, implemented with 50.6K lines of Java code. It also depends
on three external libraries. Fig. 8 shows a high-level overview of
Quasar’s architecture, including its modules and required libraries.

The second application, Tascalate JavaFlow [38], contains libraries
that provide Java developers with representation of the program’s

control state. Tascalate JavaFlow consists of 10 modules, containing 27 o
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Fig. 8. Quasar’s architecture graph in module-level.

Fig. 9. Tascalate’s architecture graph in module-level.

Fig. 10. Rhizomatic’s architecture graph in module-level.

packages in total, implemented with 11.9K lines of Java code. Fig. 9
demonstrates the module-level architecture of Tascalate JavaFlow.

The third application, Rhizomatic [39], is a runtime environment
built on JPMS that provides different programming models for devel-
oping web and RESTful Java apps. Rhizomatic consists of 7 modules
and 157 packages, implemented with 3.9K lines of Java code. Fig. 10
illustrates a high-level overview of Rhizomatic’s module architecture.

5.2. RQ1: Adaptation effectiveness

To assess Acadia’s effectiveness, we applied the adaptation strat-
egy described in Section 4 on the three subject applications while
running each of their example scenarios. Each application developer
has introduced a set of example scenarios in which the subject ap-
plication is used for different functionalities. There are 16 example
scenarios proposed for Quasar in its documentation [41], 12 example
cenarios implemented for Tascalate [42], and 5 example scenarios for
hizomatic [43]. We executed each example scenario on the adaptive-
ersion of the corresponding application. To instigate adaptation, we
ssigned a memory threshold in the range of 42%–64% of the maximum
untime memory required for execution of the non-adaptive version of
ach application. This assignment of memory threshold was intended
o be both challenging, meaning that the original non-adaptive version
f applications would not be able to execute under such memory
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Table 2
Results of Acadia performing an adaptation strategy on different example scenarios of
three subject Java apps.

App Example # AVG. Mem. (MB) Adapt.

name scenario Mod. Before After 𝛥 % Succ.

Fiber 1 51 24.4 52.16 ✓

FiberAsync 1 55 28.4 48.36 ✓

IO 1 59 32.4 45.08 ✓

Channel 1 52 24.8 52.31 ✓

Quasar Actor 2 56 36.8 34.29 ✓

SrvrBhvr 3 60 41.8 30.33 ✗

(Max Mem.: ProxySrvr 2 52 33.8 35.00 ✓

62 MB EventSrc 2 51 29.6 41.96 ✓

Mem. Thold: Supervisor 2 58 35 39.66 ✓

40 MB) ReactStrms 2 62 40.6 34.52 ✗

Issues 2 59 39.8 32.54 ✓

Migration 2 52 33.4 35.77 ✓

PingPong 2 54 34.8 35.56 ✓

GenEvent 3 60 40.8 32.00 ✗

GenServer 2 54 32.2 40.37 ✓

GalaxySrvr 2 52 29.6 43.08 ✓

Average runtime memory size reduction: 39.56%
Adaptation success rate: 81%

cdi-owb 1 11 3.2 70.91 ✓

cdi-weld3 1 12 3.2 73.33 ✓

Tascalate cd-weld4 1 12 3.2 73.33 ✓

cglib 2 12 5.4 55.00 ✓

(Max Mem.: common 2 12 5.8 51.67 ✓

12 MB dyninvoke 3 12 6.42 46.43 ✗

Mem. Thold: jee 1 12 3.2 73.33 ✓

6 MB) lambdas 1 11 3.2 70.91 ✓

retro-lmbds 1 12 3.2 73.33 ✓

skynet 1 12 3.2 73.33 ✓

trampoline6 3 12 6.42 46.43 ✗

trampoline9 3 12 7.4 38.33 ✗

Average runtime memory size reduction: 62.20%
Adaptation success rate: 75%

Rhizomatic BTS-msg 1 47 19.6 58.30 ✓

(Max Mem.: BTS-msg-gdl 1 47 19.6 58.30 ✓

47 MB BTS-msg-prd 1 43 18.6 56.74 ✓

Mem. Thold: msg-api 1 47 18.6 60.43 ✓

20 MB) msg-srvc 3 46 24.42 46.89 ✗

Average runtime memory size reduction: 56.13%
Adaptation success rate: 80%

limits, and realistic to provide the possibility of the adaptation strategy
overcoming the memory limits. Obviously, if the memory threshold is
set to extremely low levels, no adaptation strategy can possibly succeed.

For module replacement in the adaptation strategy, we prepared
memory-efficient alternative implementations for two modules in each
application. To that end, we partially modified the implementations of
a few packages inside these modules to provide the same functional-
ity with less runtime memory. More specifically, we added frequent
invocations of Java garbage collector (java.lang.System.gc())
in the source code that makes the JVM recycle unused objects to
clear the occupied memory. We also changed the certain modules’
implementations to store specific data in the disk instead of RAM. This
decision might have the disadvantage of increasing the execution time.
However, memory-constrained devices in modern systems often rely
on a solid-state drive, which is faster than traditional hard disk drives,
effectively mitigating the loss in execution time when reducing runtime
memory usage. The adaptation strategy monitored the applications’
states during the execution of each example scenario. Accordingly, it
loaded and unloaded a set of applications’ modules using Acadia, de-
pending on the size of the runtime memory and the required modules,
to meet the adaptation objective, i.e., reducing the runtime memory
usage below the threshold.

Table 2 demonstrates the results of this experiment. It includes the

application names with their assigned memory threshold and the list
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of example scenarios in our experiment. For each scenario, we speci-
fied the number of affected modules (# Mod. column), and measured
the average runtime memory size in Megabytes (MB) throughout the
execution of a scenario. For each example scenario, Table 2 includes
the average runtime memory usage before and after executing the
adaptation strategy and whether the adaptation strategy could success-
fully reduce the runtime memory usage below the predefined memory
threshold. As shown in Table 2, Acadia was able to meet the adaptation
strategy’s objective in 81%, 75%, and 80% of the example scenarios
regarding Quasar, Tascalate, and Rhizomatic applications, respectively.
In a few cases Acadia failed to reduce the runtime memory size below
the threshold due to the number of running modules at the moment,
yet, it was able to reduce the runtime memory usage by the average
of about 40% to 62% in the subject applications. These experiments
confirm that, for an overwhelming number of scenarios, Acadia was
able to effectively enable the adaptation strategy to unload and re-
load applications’ modules and modify their dependencies to reduce
the average runtime memory usage.

More importantly, the experiments show that the same adaptation
logic can be applied to effectively adapt three real-world Java appli-
cations without requiring any changes to the manner in which they
are implemented. Indeed, the same adaptation logic can be applied to
any Java 9+ application. There is nothing particularly unique about
the three applications that were selected for our experiments. It is
also important to note that whether the adaptation logic succeeds in
meeting its objectives depends on the properties of the system. For
instance, whether the adaptation logic can actually reduce the memory
footprint of a system below a user-defined threshold depends, at least
in part, on whether there are replacement modules with varying levels
of memory usage. While we created such replacement modules in our
experiments to provide a set of adaptation choices, we did not change
the manner in which the applications are implemented. That is, all
applications used in our experiments are purely Java 9+ applications.

5.3. RQ2: acadia’s performance

To assess Acadia’s performance, we answer this research question
in terms of the execution time of its Static Analyzer and Runtime
Controller compartments discussed in Section 3. Table 3 reports the
execution time of the Static Analyzer and the Runtime Controller
for each subject application’s example scenario noted as Static and
Runtime, respectively. The Static compartment takes between 16 to 36
s to statically analyze the subject applications. However, it is executed
once, and often offline before running an application, and hence, it
does not affect the application’s runtime. The Runtime compartment’s
average execution time ranges from 15 to 35 milliseconds for the subject
applications. It includes the time Acadia requires to perform adaptation
operations, such as loading/unloading modules, and updating their
dynamic architectural model. The results of Table 4 indicate that
Acadia’s execution time is only a small fraction of the example scenarios’
execution time (reported in the ‘‘Single’’ column in Table 4), i.e., about
5–8% on average.

5.4. RQ3: Overhead on applications’ execution

As described in Section 3, Acadia defines and creates module Wrap-
pers implemented using java.lang.ModuleLayer to manage, load,
and unload an application’s modules. Such an implementation imposes
an overhead in terms of an application’s execution time. However, since
the defined module wrappers only represent a group of modules with a
specific class loader to enable loading and unloading them at runtime,
they are very efficient.

To answer RQ3, we measured the average execution time of the
example scenarios both when all modules are loaded into a single
module wrapper (i.e., without the overhead of wrappers since any Java
9+ system must exist in at least a single java.lang.ModuleLayer
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Table 3
Results for Acadia’s execution time regarding its Static Analyzer and Runtime Controller
compartments.

Application Example Acadia Exec. time (ms)

name scenario Static Runtime

Quasar

Fiber

24,375

49
FiberAsync 47
IO 40
Channel 41
Actor 35
SrvrBhvr 26
ProxySrvr 31
EventSrc 34
Supervisor 30
ReactStrms 35
Issues 33
Migration 27
PingPong 37
GenEvent 33
GenServer 33
GalaxySrvr 31

Average: 35.12

Tascalate

cdi-owb

35,721

32
cdi-weld3 25
cd-weld4 33
cglib 33
common 34
dyninvoke 40
jee 24
lambdas 32
retro-lmbds 34
skynet 35
trampoline6 29
trampoline9 39

Average: 32.5

Rhizomatic

BTS-msg

16,946

14
BTS-msg-gdl 10
BTS-msg-prd 12
msg-api 9
msg-service 30

Average: 15

that implements a module wrapper) and when the modules are loaded
into separate module wrappers (i.e., with the overhead of wrappers).
Table 4 demonstrates the results of this study. The table includes the
execution time of each example scenario executing in a Single wrapper
and after splitting modules into Separate wrappers. The last column
reports the percentage of the overhead caused by module wrappers
regarding the applications’ execution time. As shown in Table 4, Acadia
imposes an overhead ranging from 4.3% to 5.4% of the applications’
execution time, on average, due to exploiting module wrappers. This
overhead is similar to that of adaptation techniques and frameworks in
the literature, e.g., 5–10% in Rainbow [44].

Overall, our experiments indicate that Acadia can effectively enable
architecture-based adaptation in Java 9+ applications without requir-
ing any change to their implementation, and with a low overhead in
terms of execution time.

Since the subject applications in our evaluation were not adaptive
on their own, we could not compare the overhead posed for adap-
tation using Acadia against a setup where the same adaptations were
performed in these applications without Acadia.

6. Threats to validity

The main threat to internal validity is that static analysis approaches
used in the Acadia’s implementation have the inherent risk of false
positives. Since Acadia takes the results of Classycle and Soot as input
for the Module Dependency Model, it inherits all of their limitations.
False positives or negatives in the results of the static analysis tools may
9 
Table 4
Results for the overhead on the subject apps’ execution time.

Application Example AVG Exec. time (ms)

name scenario Single Separated Overhead%

Quasar

Fiber 278 313 12.59%
FiberAsync 272 280 2.94%
IO 254 265 4.33%
Channel 2057 2079 1.07%
Actor 576 604 4.86%
ServerBehavior 444 479 7.88%
ProxyServer 153 167 9.15%
EventSource 335 338 0.90%
Supervisor 342 355 3.80%
ReactiveStreams 234 240 2.56%
Issues 1280 1367 6.80%
Migration 1237 1306 5.58%
PingPong 1218 1254 2.96%
GenEvent 1223 1265 3.43%
GenServer 1217 1293 6.24%
GalaxyServer 1234 1286 4.21%

Average: 4.96%

Tascalate

cdi-owb 613 638 4.08%
cdi-weld3 632 648 2.53%
cd-weld4 616 671 8.93%
cglib 615 623 1.30%
common 613 616 0.49%
dyninvoke 612 626 2.29%
jee 620 634 2.26%
lambdas 611 643 5.24%
retro-lambdas 615 652 6.02%
skynet 613 648 5.71%
trampoline6 612 671 9.64%
trampoline9 619 641 3.55%

Average: 4.34%

Rhizomatic

BTS-msg 171 180 5.26%
BTS-msg-gradle 167 171 2.40%
BTS-msg-prod 178 192 7.87%
msg-api 194 211 8.76%
msg-service 208 213 2.40%

Average: 5.34%

cause Acadia to build an inaccurate module dependency and dynamic
architecture models of the application, which may lead to failure of the
managing subsystem’s adaptation strategy. However, the static analysis
frameworks we used are among the widely used tools in the literature.
Classycle has been used and in development for over 11 years and lever-
aged by other state-of-the-art tools for software architecture [45–51].
Soot is a widely used [52,53] and actively maintained framework [54]
for static analysis of Java programs.

The main threat to external validity is the selection and number of
Java applications in our evaluation dataset. To mitigate this threat, we
selected relatively large open-source Java 9+ applications from GitHub,
one of the largest and most widely used open-source repositories online.
Another external threat to validity is that Acadia is specific to Java 9+
and does not apply to other languages, as it is implemented on top of
JPMS and its run-time constructs. This threat is alleviated by the fact
that Java is one of the most widely used languages in the world [55,56].
However, the general idea behind Acadia can be applied to any other
language with modular programming constructs. Additionally, Acadia
only targets one type of adaptation strategy, i.e., architecture-based
adaptation.

7. Related work

This section overviews prior work on dynamic software adaptation
and architecture-based software adaptation. At the outset, we note that
there are many facets to software adaptation. Several prior studies
(e.g., [57–59]), including those by one of the authors (e.g., [60,61]),
have explored the variability points in dynamic adaptation. Prior
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studies have also enumerated the challenges of engineering adaptive
software [1,20]. The focus of this work is on the implementation
aspects of adaptive software. To evaluate our research, we have applied
Acadia to a particular adaptation problem, but this is merely to evaluate
our claims that (1) Acadia can be used to adapt existing real-world Java
oftware systems without making any changes to their implementation,
nd (2) measure the overhead associated with Acadia. There are numer-

ous other key concerns in (self-)adaptation, including for example how
the adaptation is triggered, how the adaptation decisions are made,
and whether certain assurances can be provided about the adaptation.
While we acknowledge these concerns, they are not the focus of this
work. We point the interested reader to the above-mentioned publica-
tions for an in-depth explanation of factors that should be considered
in adaptation.

Since our focus is on implementation techniques, in the following
sections we first discuss implementation techniques broadly, includ-
ing those that are targeting service-oriented, cloud, or product line
environments. We then provide an overview of architecture-based
adaptation implementation techniques, as they are more relevant to
Acadia’s architecture-based approach.

Dynamic Adaptation Implementation: Dynamic adaptability has
become one of the major properties of large software applications in
many different domains [62]. The software engineering community has
proposed various techniques for dynamic adaptation of software sys-
tems. Some address dynamic adaptation by providing models to specify
and tools to implement dynamically adaptive software systems [63–
67]: They introduce models to specify and execute adaptive sys-
tems [64–66] or propose a methodology for modeling and validation of
dynamic adaptation [67]; and studies that focus on dynamic adaptation
in service-based applications [68] by providing a runtime support [69]
or a framework to specify and analyze dynamically configurable service
architectures [70]. iPOJO [71] proposes a service-oriented compo-
nent framework for handling dynamic adaptation. Klus et al. [72]
present a dynamic adaptive system infrastructure and an underlying
component model. Some studies have addressed dynamic adaptation
from other perspectives, e.g., in multi-cloud or distributed systems
[73,74], investigating safe adaptation [75], utilizing dynamic product
line architecture [76–78], using software process technology [79], and
addressing dynamic adaptation from a security perspective [80].

Architecture-Based Adaptation Implementation: As software sys-
tem’s architecture directly impacts its quality attributes, the literature
has studied a range of architectural styles with regards to their support
for structural and behavioral changes at runtime [2,81], e.g., presenting
an architectural strategy for self-adapting systems [82] or a reference
architecture for system configuration and behavior adaptation [83].

Various approaches have leveraged architectural models to address
dynamic adaptation of software systems [3,84–86]. Particularly, Cheng
et al. [3] utilize externalized architectural models for adaptation of
pervasive computing systems based on performance-related criteria.
Bencomo et al. [84] use architectural models for representation, gener-
ation, and operation of highly configurable component-based systems.
Additionally, Cu et al. [85] leverage an architectural variability mech-
anism to present an approach that automatically updates both source
code and running code during the system evolution. However, due to
the uncertainty of many existing models, D’Ippolito et al. [86] pro-
pose a tiered framework for combining specific models with different
assumptions and risks.

Several research groups have previously developed frameworks for
realization of architecture-based adaptation, such as Rainbow [8],
C2 [9], ArchJava [12], Darwin [10,11], Prism-MW [13], and Activ-
FORMS [87]. For instance, Rainbow [8] uses architecture models and
styles to provide a reusable infrastructure that monitors a running
system and updates its architectural model based on different self-
adaptation strategies. More recently, Swanson et al. developed Refract,
which extends Rainbow with new components and algorithms targeting

failure avoidance [88]. The nature of adaptations provided by our

10 
approach is not fundamentally different from these seminal works,
many of which support adaptation of components and their interfaces
(sometimes referred to as ports). Some of the approaches, such as
C2, support adaptation of connectors, which our approach does not,
because the notion of connector is still not explicit in the JPMS.

Prior studies have investigated architecture-based adaptation in
other contexts, e.g., service-based applications [89–92], distributed
systems [93,94], microservices [95], internet-of-things (IoT) [96], and
mobile computing [97]. More specifically, Weyns et al. [93] present
an architectural style for decentralized self-adaptive systems. Similar
to Acadia, Florio et al. [95] introduce Gru that adds adaptation capa-
bilities to microservices without changing their implementations. In the
context of IoT, Weyns et al. [96] propose an architecture-based adap-
tation approach for automating IoT systems’ management. Hallsteinsen
et al. [97] introduce MADAM, a generic middleware for mobile apps’
adaptation. Other approaches in container-based applications require
migration to specific platforms, e.g., OSGi [98], or target different
goals, e.g., easier collaboration [99] or freezing of an application’s
architecture [90].

While the above-mentioned techniques have provided the inspira-
tion for our work, all require a software system to be designed and
developed for adaptation using the corresponding frameworks. None
of the above-mentioned solutions are capable of readily adapting ap-
plications built using one of the most popular programming languages
without requiring any changes to the manner in which the applications
are built. Acadia does not require any changes to an implemented sys-
tem other than using the standard, albeit relatively recently introduced,
Java constructs, enabling automatic architecture-based adaptation sup-
port for and evaluation on many large, real-world Java applications,
which are abundantly available on open-source software repositories
(e.g., GitHub).

8. Conclusion

The capability to retain an accurate representation of a system’s
architecture at runtime and make adaptation decisions in terms of
its architectural characteristics, e.g., components and interfaces, is
referred to as architecture-based adaptability. Despite its potential,
architecture-based adaptability has not gained traction in industry,
as it often complicates the software development by requiring non-
trivial modification to the manner it is developed. This paper introduces
Acadia, a framework that leverages JPMS and static analysis techniques
to automatically enable architecture-based adaptation support in any
Java 9+ application. More specifically, Acadia provides support for
making changes to Java 9+ software systems, i.e., Component Control
layer [32], without requiring any changes to their implementation and
can be used in the construction of different (self-)adaptive systems, as
it is completely independent of the managing systems that are imple-
mented on top of it, i.e., Change and Goal Management layers [32].
Using Acadia, an engineer can focus on the development of adaptation
logic, which can obtain the dynamic architecture of the running Java
system and apply changes to it through an API. Our evaluation results
indicate that Acadia can effectively maintain and modify the architec-
ture of any Java 9+ application at runtime with very low overhead and
requiring no changes to its implementation.

An interesting avenue of future work will be to study the extent to
which ideas underlying Acadia can be applied in other environments.
For instance, C++ has also recently introduced support for modules in
its 20th edition [100]. In our future work, we aim to investigate the
degree to which a framework similar to Acadia can be developed for
C++.
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