
Toward a Catalogue of Architectural Bad Smells

Joshua Garcia, Daniel Popescu, George Edwards and Nenad Medvidovic

University of Southern California, Los Angeles, CA, USA
{joshuaga,dpopescu,gedwards,neno}@usc.edu

Abstract. An architectural bad smell is a commonly (although not al-
ways intentionally) used set of architectural design decisions that neg-
atively impacts system lifecycle properties, such as understandability,
testability, extensibility, and reusability. In our previous short paper, we
introduced the notion of architectural bad smells and outlined a few com-
mon smells. In this paper, we significantly expand upon that work. In
particular, we describe in detail four representative architectural smells
that emerged from reverse-engineering and re-engineering two large in-
dustrial systems and from our search through case studies in research
literature. For each of the four architectural smells, we provide illustra-
tive examples and demonstrate the smell’s impact on system lifecycle
properties. Our experiences indicate the need to identify and catalog ar-
chitectural smells so that software architects can discover and eliminate
them from system designs.

1 Introduction

As the cost of developing software increases, so does the incentive to evolve and
adapt existing systems to meet new requirements, rather than building entirely
new systems. Today, it is not uncommon for a software application family to be
maintained and upgraded over a span of five years, ten years, or longer. However,
in order to successfully modify a legacy application to support new functionality,
run on new platforms, or integrate with new systems, evolution must be carefully
managed and executed. Frequently, it is necessary to refactor [1], or restructure
the design of a system, so that new requirements can be supported in an efficient
and reliable manner.

The most commonly used way to determine how to refactor is to identify
code bad smells [2] [1]. Code smells are implementation structures that neg-
atively affect system lifecycle properties, such as understandability, testability,
extensibility, and reusability; that is, code smells ultimately result in maintain-
ability problems. Common examples of code smells include very long param-
eter lists and duplicated code (i.e., clones). Code smells are defined in terms
of implementation-level constructs, such as methods, classes, parameters, and
statements. Consequently, refactoring methods to correct code smells also oper-
ate at the implementation level (e.g., moving a method from one class to another,
adding a new class, or altering the class inheritance hierarchy).

While detection and correction of code smells is one way to improve system
maintainability, some maintainability issues originate from poor use of software

2

architecture-level abstractions — components, connectors, styles, and so on —
rather than implementation constructs. In our previous work [3], we introduced
the notion of architectural bad smells and identified four representative smells.
Architectural bad smells are combinations of architectural constructs that induce
reductions in system maintainability. Architectural smells are analogous to code
smells because they both represent common “solutions” that are not necessarily
faulty or errant, but still negatively impact software quality. In this paper, we
expand upon the four smells identified in our previous work by describing them
in detail and illustrating their occurence in case studies from research literature
and our own architectural recovery [4] [5] and industrial maintenance efforts.

The remainder of this paper is organized as follows. Section 2 explains the
characteristics and significance of architectural smells. Section 3 summarizes re-
search efforts in related topics. Section 4 introduces two long-term software main-
tenance efforts on industrial systems and case studies from research literature
that we use to illustrate our four representative architectural smells. Section 5
describes our four architectural smells in detail, and illustrates the impact of
each smell through concrete examples drawn from the systems mentioned in
Section 4. Finally, Section 6 provides closing discussion and insights.

2 Definition

In this section, we define what constitutes an architectural smell and discuss the
important properties of architectural smells.

We define a software system’s architecture as “the set of principal design deci-
sions governing a system” [6]. The system stakeholders determine which aspects
are deemed to be “principal.” In practice, this usually includes (but is not limited
to) how the system is organized into subsystems and components, how function-
ality is allocated to components, and how components interact with each other
and their execution environment. The term architectural smell was originally
defined in [7] as a commonly used architectural decision that negatively impacts
system quality. Architectural smells may be caused by applying a design solu-
tion in an inappropriate context, mixing combinations of design abstractions
that have undesirable emergent behaviors, or applying design abstractions at
the wrong level of granularity. Architectural smells most directly affect lifecycle
properties, such as understandability, testability, extensibility, and reusability,
but they may have harmful side effects on other quality properties like perfor-
mance and reliability. Architectural smells are remedied by altering the internal
structure of the system and the behaviors of internal system elements without
changing the external behavior of the system. We extend, in three ways, the
definition of architectural smell found in [7].

Our first extension to the definition is our explicit capture of architectural
smells as design instances that are independent from the engineering processes
that created the design. That is, human organizations and processes are orthog-
onal to the definition and impact of a specific architectural smell. In practical
terms, this means that the detection and correction of architectural smells is not

3

dependent on an understanding of the history of a software system. For example,
an independent analyst should be able to audit a documented architecture and
indicate possible smells without knowing about the development organization,
management, or processes.

For our second extension to the definition, we do not differentiate between
architectural smells that are part of an intended design (e.g., a set of UML
specifications for a system that has not yet been built) as opposed to an imple-
mented design (e.g., the implicit architecture of an executing system) because
architectural smells can appear in both designs.

For our last extension, we attempt to facilitate the detection of architec-
tural smells through specific, concrete definitions captured in terms of standard
architectural building blocks — components, connectors, interfaces, and config-
urations. Increasingly, software engineers reason about their systems in terms of
these concepts [8, 6], so in order to be readily applicable and maximally effec-
tive, our architectural smell definitions similarly utilize these abstractions (see
Section 5). The definition in [7] does not utilize explicit architectural interfaces
or first-class connectors in their smells.

In many contexts, a design that exhibits a smell will be justified by other
concerns. Architectural smells always involve a trade-off between different prop-
erties, and the system architects must determine whether action to correct the
smell will result in a net benefit. Furthermore, refactoring to reduce or eliminate
an architectural smell may involve risk and almost always requires investment
of developer effort.

3 Related Work

In this section, we provide an overview of four topics that are directly related to
architectural smells: code smells, architectural antipatterns, architectural mis-
matches, and defects.

The term code smells was introduced by Beck and Fowler [2] for code struc-
tures that intuitively appear as bad solutions and indicate possibilities for code
improvements. For most code smells, refactoring solutions that result in higher
quality software are known. Although bad smells were originally based on sub-
jective intuitions of bad code practice, recent work has developed ways to detect
code smells based on metrics [9] and has investigated the impact of bad smells
using historical information [10]. As noted in Section 1, code smells only apply
to implementation issues (e.g., a class with too many or too few methods), and
do not guide software architects towards higher-level design improvements.

Closely related to code smells are antipatterns [11]. An antipattern describes
a recurring situation that has a negative impact on a software project. Antipat-
terns include wide-ranging concerns related to project management, architecture,
and development, and generally indicate organizational and process difficulties
(e.g., design-by-committee) rather than design problems. The general definition
of antipatterns allows both code and architectural smells to be classified as an-
tipatterns. However, antipatterns that specifically pertain to architectural issues

4

typically capture the causes and characteristics of poor design from a system-
wide viewpoint (e.g., stove-piped systems). Architectural smells, on the other
hand, focus on design problems that are independent from process and organi-
zational concerns, and concretely address the internal structure and behavior of
systems.

Another concept similar to architectural smells is architectural mismatch [12].
Architectural mismatch is the set of conflicting assumptions architectural ele-
ments may make about the system in which they are used. In turn, these con-
flicting assumptions may prevent the integration of an architectural element
into a system. Work conducted in [13] and [14] has resulted in a set of concep-
tual features used to define architectural designs in order to detect architectural
mismatch. While instructive to our work, architectural mismatch research has
focused heavily on the functional properties of a system without considering the
effects on lifecycle properties.

Finally, defects are similar to architectural smells. A defect is a manifes-
tation of an error in a system [15]. An error is a mental mistake made by a
designer or developer [15]. In other words, a defect is an error that is manifested
in either a requirements, design, or implemented system that is undesired or un-
intended [16]. Defects are never desirable in a software system, while smells may
be desirable if a designer or developer prefers the reduction in certain lifecycle
properties for a gain in other properties, such as performance.

4 Systems Under Discussion

Our experience with two long-term software projects brought us to the realiza-
tion that some commonly-used design structures adversely affect system main-
tainability. In this section, we introduce these projects by summarizing their
context and objectives. Later in the paper, we utilize specific examples from
these projects to illustrate the impact of architectural bad smells.

Maintenance of large-scale software systems includes both architectural re-
covery and refactoring activities. Architectural recovery is necessary when a
system’s conceptual architecture is unknown or undocumented. Architectural
refactoring is required when a system’s architecture is determined to be unsatis-
factory and must be altered. We discovered architectural bad smells during both
an architectural recovery effort (summarized in Section 4.1) and an architectural
refactoring effort (summarized in Section 4.2). To substantiate our observations,
we found further examples of architectural bad smells that appear in recovery
and refactoring efforts published in the research literature.

4.1 Grid Architecture Recovery

An extensive study of grid system [17] implementations contributed to our collec-
tion and insights of architectural smells. Grid technologies allow heterogeneous
organizations to solve complex problems using shared computing resources. Four
years ago, we conducted a pilot study [18] in which we extracted and studied

5

the architecture of five widely-used grid technologies and compared their ar-
chitectures to the published grid reference architecture [17]. We subsequently
completed a more comprehensive grid architecture recovery project and recently
published a report [5] on the architectures of eighteen grid technologies, includ-
ing a new reference architecture for the grid. The examined grid systems were
developed in C, C++, or Java and contained up to 2.2 million SLOC. Many of
these systems included similar design elements that have a negative effect on
quality properties.

Resource
Node

Resource
Node

Fabric

ResourceResource

Fabric

Application

other grid nodes

Client/Server Interactions

job execution/
(m

eta-)data
query

1...* grid nodes (typically 1 per organization)

1...* resource nodes

Collective

Layered
Interactions

Notification
interactions

Resource
Utilization
Balancing

Data
Exchange

Request
Interactions

P2P interactions

Fig. 1. Structural View of the Grid Reference Architecture

Figure 1 shows the identified reference architecture for the grid. A grid system
is composed of four subsystems: Application, Collective, Resource, and Fabric.
Each subsystem is usually instantiated multiple times. An Application can be
any client that needs grid services and is able to use an API that interfaces with
Collective or Resource components. The components in the Collective subsystem
are used to orchestrate and distribute data and grid jobs to the various available
resources in a manner consistent with the security and trust policies specified
by the institutions within a grid system (i.e., the virtual organization). The
Resource subsystem contains components that perform individual operations
required by a grid system by leveraging available lower-level Fabric components.
Fabric components offer access capabilities to computational and data resources
on an individual node (e.g., access to file-system operations). Each subsystem
uses different interaction mechanisms to communicate with other subsystems, as
noted in Figure 1. The interaction mechanisms are described in [5].

6

4.2 MIDAS Architecture Refactoring

In collaboration with an industrial partner, for the last three years we have been
developing a lightweight middleware platform, called MIDAS, for distributed
sensor applications [19] [20]. Over ten software engineers in three geographi-
cally distributed locations contributed to MIDAS in multiple development cycles
to address changing and growing requirements. In its current version, MIDAS
implements many high-level services (e.g., transparent fault-tolerance through
component replication) that were not anticipated at the commencement of the
project. Additionally, MIDAS was ported to a new operating system (Linux) and
programming language (C++), and capabilities tailored for a new domain (mo-
bile robotics) were added. As a consequence, the MIDAS architecture was forced
to evolve in unanticipated ways, and the system’s complexity grew substantially.
In its current version, the MIDAS middleware platform consists of approximately
100 KSLOC in C++ and Java. The iterative development of MIDAS eventu-
ally caused several architectural elements to lose conceptual coherence (e.g., by
providing multiple services). As a consequence, we recently spent three person-
months refactoring the system to achieve better modularity, understandability,
and adaptability. While performing the refactoring, we again encountered archi-
tectural structures that negatively affected system lifecycle properties.

Figure 2 shows a layered view of the MIDAS middleware platform. The bot-
tom of the MIDAS architecture is a virtual machine layer that allows the mid-
dleware to be deployed on heterogeneous OS and hardware platforms efficiently.
The host abstraction facilities provided by the virtual machine are leveraged
by the middleware’s architectural constructs at the layer above. These archi-
tectural constructs enable a software organization to directly map its system’s
architecture to the system’s implementation. Finally, these constructs are used
to implement advanced distributed services such as fault-tolerance and resource
discovery.

4.3 Studies from Research Literature

Given the above experiences, we examined the work in architectural recovery
and refactoring published in research literature [4] [21] [22] [23], which helped us
to understand architectural design challenges and common bad smells. In this
paper, we refer to examples from a case study that extracted and analyzed the
architecture of Linux [4]. In this study, Bowman et al. created a conceptual archi-
tecture of the Linux kernel based on available documentation and then extracted
the architectural dependencies within the kernel source code (800 KSLOC). They
concluded that the kernel contained a number of design problems, such as un-
necessary and unintended dependencies.

5 Architectural Smells

This section describes four architectural smells in detail. We define each architec-
tural smell in terms of participating architectural elements — components, con-
nectors, interfaces, and configurations. Components are computational elements

7

Fig. 2. System Stack Layers in MIDAS

that implement application functionality in a software system [24]. Connectors
provide application-independent interaction facilities, such as transfer of data
and control [25]. Interfaces are the interaction points between components and
connectors. Finally, configurations represent the set of associations and relation-
ships between components and/or connectors. We provide a generic schematic
view of each smell captured in one or more UML diagrams. Architects can use
diagrams such as these to inspect their own designs for architectural smells.

5.1 Connector Envy

Description. Components with Connector Envy encompass extensive interaction-
related functionality that should be delegated to a connector. Connectors pro-
vide the following types of interaction services: communication, coordination,
conversion, and facilitation [25]. Communication concerns the transfer of data
(e.g., messages, computational results, etc.) between architectural elements. Co-
ordination concerns the transfer of control (e.g., the passing of thread execution)
between architectural elements. Conversion is concerned with the translation of
differing interaction services between architectural elements (e.g., conversion of
data formats, types, protocols, etc). Facilitation describes the mediation, opti-
mization, and streamlining of interaction (e.g., load balancing, monitoring, and
fault tolerance). Components that extensively utilize functionality from one or
more of these four categories suffer from the Connector Envy smell.

Figure 3a shows a schematic view of one Connector Envy smell, where Com-
ponentA implements communication and facilitation services. ComponentA im-
ports a communication library, which implies that it manages the low-level net-
working facilities used to implement remote communication. The naming, de-
livery and routing services handled by remote communication are a type of
facilitation service.

8

ComponentA

Communication
Library

<<import>>

ProcessingInterfaceA

ProcessingInterfaceB

ComponentB

process
+ process(Type P)
- convert(Type P)

PublicInterface

process(Type P){
 b = new CoreClassB();
 b.processCoreConcern
 (convert(P));
}

+ processCoreConcern
 (ConcernType P)

CoreClassB

a b

Fig. 3. The top diagram depicts Connector Envy involving communication and facil-
itation services. The bottom diagram shows Connector Envy involving a conversion
service.

Figure 3b depicts another Connector Envy smell, where ComponentB per-
forms a conversion as part of its processing. The interface of ComponentB called
process is implemented by the PublicInterface class of ComponentB. PublicInter-
face implements its process method by calling a conversion method that trans-
forms a parameter of type Type into a ConcernType.

Quality Impact and Trade-offs. Coupling connector capabilities with
component functionality reduces reusability, understandability, and testability.
Reusability is reduced by the creation of dependencies between interaction ser-
vices and application-specific services, which make it difficult to reuse either type
of service without including the other. The overall understandability of the com-
ponent decreases because disparate concerns are commingled. Lastly, testability
is affected by Connector Envy because application functionality and interaction
functionality cannot be separately tested. If a test fails, either the application
logic or the interaction mechanism could be the source of the error.

As an example, consider a MapDisplay component that draws a map of
the route followed by a robot through its environment. The component expects
position data to arrive as Cartesian coordinates and converts that data to a
screen coordinate system that uses only positive x and y values. The MapDisplay
suffers from Connector Envy because it performs conversion of data formats
between the robot controller and the user interface. If the MapDisplay is used in a
new, simulated robot whose controller represents the world in screen coordinates,
the conversion mechanism becomes superfluous, yet the MapDisplay cannot be
reused intact without it. Errors in the displayed location of the robot could arise
from incorrect data conversion or some other part of the MapDisplay, yet the
encapsulation of the adapter within the MapDisplay makes it difficult to test
and verify in isolation.

The Connector Envy smell may be acceptable when performance is of higher
priority than maintainability. More specifically, explicitly separating the inter-
action mechanism from the application-specific code creates an extra level of
indirection. In some cases, it may also require the creation of additional threads
or processes. Highly resource-constrained applications that use simple interac-
tion mechanisms without rich semantics may benefit from retaining this smell.
However, making such a trade-off simply for efficiency reasons, without consid-

9

ering the maintainability implications of the smell, can have a disastrous cumu-
lative effect as multiple incompatible connector types are placed within multiple
components that are used in the same system.

Example from Industrial Systems. The Gfarm Filesystem Daemon (gfsd)
from a grid technology called Grid Datafarm [26] is a concrete example of a com-
ponent with Connector Envy that follows the form described in Figure 3. The
gfsd is a Resource component and runs on a Resource node as depicted in Fig-
ure 1. The gfsd imports a library that is used to build the lightweight remote
procedure call (RPC) mechanism within the gfsd. This built-in RPC mechanism
provides no interfaces to other components and, thus, is used solely by the gfsd.
While the general schematic in Figure 3 shows only an instance of communication
and facilitation, this instance of the smell also introduces coordination services
by implementing a procedure call mechanism. The interfaces of the gfsd provide
remote file operations, file replication, user authentication and node resource
status monitoring. These interfaces and the gfsd ’s RPC mechanism enable the
notification, request, and P2P interactions shown in Figure 1 that occur across
Resource nodes in Grid Datafarm.

Reusability, modifiability, and understandability are adversely affected by
the Connector Envy smell in the gfsd. The reusability effects of Connector Envy
can be seen in a situation where a new Resource component, called Gfarm work-
flow system daemon (gwsd), that provides workflow-based services is added to
Grid Datafarm. The RPC mechanism within the gfsd is built without interfaces
that can be made available to other components, hence the RPC mechanism
cannot be used with the gwsd. Understandability is reduced by the unneces-
sary dependencies between the gfsd ’s application-specific functionality (e.g., file
replication, local file operations, etc.) and RPC mechanism. The combination
of application-specific functionality and interaction mechanisms throughout the
functions of the gfsd enlarge the component in terms of function size, number
of functions, and shared variables. Both modifiability and understandability are
adversely affected by having the overwhelming majority of the gfsd ’s functions
involve the use or construction of Grid Datafarm’s RPC mechanism.

It is possible that since grid technologies need to be efficient, the creators
of Grid Datafarm may have intentionally built a gfsd with Connector Envy in
order to avoid the performance effects of the indirection required for a fully
separated connector. Another fact to consider is that Grid Datafarm has been in
use for at least seven years and has undergone a significant number of updates
that have expanded the gfsd ’s functionality. This has likely resulted in further
commingling of connector-functionality with application-specific functionality.

5.2 Scattered Parasitic Functionality

Description. Scattered Parasitic Functionality describes a system where mul-
tiple components are responsible for realizing the same high-level concern and,
additionally, some of those components are responsible for orthogonal concerns.
This smell violates the principle of separation of concerns in two ways. First, this
smell scatters a single concern across multiple components. Secondly, at least one

10

access

ComponentA

+ SharedConcern
ClassA

ComponentB

+ SharedConcern
+ ConcernB

ClassB

ComponentC

+ SharedConcern
+ ConcernC

ClassC

Fig. 4. The Scattered Parasitic Functionality occurring across three components.

component addresses multiple orthogonal concerns. In other words, the scattered
concern infects a component with another orthogonal concern, akin to a parasite.
Combining all components involved creates a large component that encompasses
orthogonal concerns. Scattered Parasitic Functionality may be caused by cross-
cutting concerns that are not addressed properly. Note that, while similar on the
surface, this architectural smell differs from the shotgun surgery code smell [2]
because the code smell is agnostic to orthogonal concerns.

Figure 4 depicts three components that are each responsible for the same
high-level concern called SharedConcern, while ComponentB and ComponentC
are responsible for orthogonal concerns. The three components in Figure 4 can-
not be combined without creating a component that deals with more than one
clearly-defined concern. ComponentB and ComponentC violate the principle of
separation of concerns since they are both responsible for multiple orthogonal
concerns.

Quality Impact and Trade-offs. The Scattered Parasitic Functionality
smell adversely affects modifiability, understandability, testability, and reusabil-
ity. Using the concrete illustration from Figure 4, modifiability, testability, and
understandability of the system are reduced because when SharedConcern needs
to be changed, there are three possible places where SharedConcern can be up-
dated and tested. Another facet reducing understandability is that both Compo-
nentB and ComponentC also deal with orthogonal concerns. Designers cannot
reuse the implementation of SharedConcern depicted in Figure 4 without using
all three components in the figure.

One situation where scattered functionality is acceptable is when the Shared-
Concern needs to be provided by multiple off-the-shelf (OTS) components whose
internals are not available for modification.

Example from Industrial Systems. Bowman et al.’s study [4] illustrates
an occurrence of Scattered Parasitic Functionality in the widely used Linux op-
erating system. The case study reveals that Linux’s status reporting of execution
processes is actually implemented throughout the kernel, even though Linux’s
conceptual architecture indicates that status reporting should be implemented
in the PROC file system component. Consequently, the status reporting func-
tionality is scattered across components in the system. This instance of the smell
resulted in two unintended dependencies on the PROC file system, namely, the

11

Network Interface and Process Scheduler components became dependent on the
PROC file system.

The PROC file system example suffers from the same diminished lifecycle
properties as the notional system described in the schematic in Figure 4. Mod-
ifiability and testability are reduced because updates to status reporting func-
tionality result in multiple places throughout the kernel that can be tested or
changed. Furthermore, understandability is decreased by the additional associ-
ations created by Scattered Parasitic Functionality among components.

The developers of Linux may have implemented the operating system in this
manner since status reporting of different components may be assigned to each
one of those components. Although it may at first glance make sense to distribute
such functionality across components, more maintainable solutions exist, such
as implementing a monitoring connector to exchange status reporting data or
creating an aspect [27] for status reporting.

5.3 Ambiguous Interfaces

Description. Ambiguous Interfaces are interfaces that offer only a single, gen-
eral entry-point into a component. This smell appears especially in event-based
publish-subscribe systems, where interactions are not explicitly modeled and
multiple components exchange event messages via a shared event bus. In this
class of systems, Ambiguous Interfaces undermine static dependency analysis for
determining execution flows among the components. They also appear in systems
where components use general types such as strings or integers to perform dy-
namic dispatch. Unlike other constructs that reduce static analyzability, such as
function pointers and polymorphism, Ambiguous Interfaces are not programming
language constructs; rather, Ambiguous Interfaces reduce static analyzability at
the architectural level and can occur independently of the implementation-level
constructs that realize them.

Two criteria define the Ambiguous Interface smell depicted in Figure 5. First,
an Ambiguous Interface offers only one public service or method, although its
component offers and processes multiple services. The component accepts all
invocation requests through this single entry-point and internally dispatches to
other services or methods. Second, since the interface only offers one entry-
point, the accepted type is consequently overly general. Therefore, a component

ComponentA process

+ process(GeneralType P)

PublicInterface

process(GeneralType P){
 if (P.type == TypeA) {...}
 if (P.type == TypeB) {...}
 ...

Fig. 5. An Ambiguous Interface is implemented using a single public method with a
generic type as a parameter.

12

implementing this interface claims to handle more types of parameters than it
will actually process by accepting the parameter P of generic type GeneralType.
The decision whether the component filters or accepts an incoming event is part
of the component implementation and usually hidden to other elements in the
system.

Quality Impact and Trade-offs. Ambiguous Interfaces reduce a system’s
analyzability and understandability because an Ambiguous Interface does not
reveal which services a component is offering. A user of this component has to
inspect the component’s implementation before using its services. Additionally,
in an event-based system, Ambiguous Interfaces cause a static analysis to over-
generalize potential dependencies. They indicate that all subscribers attached
to an event bus are dependent on all publishers attached to that same bus.
Therefore, the system seems to be more widely coupled than what is actually
manifested at run-time. Even though systems utilizing the event-based style
typically have Ambiguous Interfaces, components utilizing direct invocation may
also suffer from Ambiguous Interfaces. Although dependencies between these
components are statically recoverable, the particular service being invoked by
the calling component may not be if the called component contains a single
interface that is an entry point to multiple services.

The following example helps to illustrate the negative effect of the wide cou-
pling. Consider an event-based system containing n components, where all com-
ponents are connected to a shared event bus. Each component can publish events
and subscribes to all events. A change to one publisher service of a component
could impact (n− 1) components, since all components appear to be subscribed
to the event, even if they immediately discard this event. A more precise in-
terface would increase understandability by narrowing the number of possible
subscribers to the publishing service. Continuing with the above example, if each
component would list its detailed subscriptions, a maintenance engineer could
see which m components (m ≤ n) would be affected by changing the specific
publisher service. Therefore, the engineer would only have to inspect the change
effect on m components instead of n − 1. Often times, components exchange
events in long interactions sequences; in these cases, the Ambiguous Interface
smell forces an architect to repeatedly determine component dependencies for
each step in the interaction sequence.

Example from Industrial Systems. A significant number of event-based
middleware systems suffer from the form of Ambiguous Interface smell depicted
in Figure 5. An example of a widely used system that follows this design is the
Java Messaging Service (JMS) [28]. Consumers in JMS receive generic Message
objects through a single receive method. The message objects are typically cast
to specific message types before any one of them is to be processed. Another
event-based system that acts in this manner is the Information Bus [29]. In this
system, publishers mark the events they send with subjects and consumers can
subscribe to a particular subject. Consumers may subscribe to events using a
partially specified subject or through wild-cards, which encourage programmers
to subscribe to more events then they actually process.

13

The event-based mechanism used by MIDAS conforms to the diagram in
Figure 5. In the manner described above, MIDAS is able to easily achieve dy-
namic adaptation. Through the use of DLLs, MIDAS can add, remove, and
replace components during run-time, even in a highly resource-constrained sen-
sor network system. As mentioned in Section 4.2, we have recently spent three
person-months refactoring the system to achieve better modularity, understand-
ability, and adaptability. During the refactoring, determining dependencies and
causality of events in the system was difficult due to the issues of over-generalized
potential dependencies described above. An extensive amount of recovery needed
to be done to determine which dependencies occur in what context.

5.4 Extraneous Adjacent Connector

Description. The Extraneous Adjacent Connector smell occurs when two con-
nectors of different types are used to link a pair of components. Eight types
of connectors have been identified and classified in the literature [25]. In this
paper, we focus primarily on the impact of combining two particular types of
connectors, procedure call and event connectors, but this smell applies to other
connector types as well. Figure 6 shows a schematic view of two components
that communicate using both a procedure call connector and an event-based
connector.

ComponentA

<<Connector>>
SoftwareEventBus

ComponentB

+ operation()

ClassA

+ operation()

ClassB

...
a = new ClassA();
a.operation();
...

send
receive receive

send

<<call>>

Fig. 6. The connector SoftwareEventBus is accompanied by a direct method invocation
between two components.

In an event-based communication model, components transmit messages,
called events, to other components asynchronously and possibly anonymously.
In Figure 6, ComponentA and ComponentB communicate by sending events to
the SoftwareEventBus, which dispatches the event to the recipient. Procedure
calls transfer data and control through the direct invocation of a service interface
provided by a component. As shown in Figure 6, an object of type ClassB in
ComponentB communicates with ComponentA using a direct method call.

Quality Impact and Trade-offs. An architect’s choice of connector types
may affect particular lifecycle properties. For example, procedure calls have a
positive affect on understandability, since direct method invocations make the
transfer of control explicit and, as a result, control dependencies become easily

14

traceable. On the other hand, event connectors increase reusability and adapt-
ability because senders and receivers of events are usually unaware of each other
and, therefore, can more easily be replaced or updated. However, having two ar-
chitectural elements that communicate over different connector types in parallel
carries the danger that the beneficial effects of each individual connector may
cancel each other out.

While method calls increase understandability, using an additional event-
based connector reduces this benefit because it is unclear whether and under
what circumstances additional communication occurs between ComponentA and
ComponentB. For example, it is not evident whether ComponentA functionality
needs to invoke services in ComponentB. Furthermore, while an event connec-
tor can enforce an ordered delivery of events (e.g., using a FIFO policy), the
procedure call might bypass this ordering. Consequently, understandability is
affected, because a software maintenance engineer has to consider the (often un-
foreseen and even unforeseeable) side effects the connector types may have on
one another.

On the other hand, the direct method invocation potentially cancels the pos-
itive impact of the event connector on adaptability and reusability. In cases
where only an event connector is used, components can be replaced during sys-
tem runtime or redeployed onto different hosts. In the scenario in Figure 6,
ComponentA’s implementation cannot be replaced, moved or updated during
runtime without invalidating the direct reference ComponentB has on ClassA.

This smell may be acceptable in certain cases. For example, standalone desk-
top applications often use both connector types to handle user input via a GUI.
In these cases, event connectors are not used for adaptability benefits, but to
enable asynchronous handling of GUI events from the user.

Example from Industrial Systems. In the MIDAS system, shown in Fig-
ure 2, the primary method of communication is through event-based connectors
provided by the underlying architectural framework. All high-level services of MI-
DAS, such as resource discovery and fault-tolerance were also implemented using
event-based communication. While refactoring as described in Section 4.2, we
observed an instance of the Extraneous Adjacent Connector smell. We identified
that the Service Discovery Engine, which contains resource discovery logic, was
directly accessing the Service Registry component using procedure calls. During
the refactoring an additional event-based connector for routing had to be placed
between these two components, because the Fault Tolerance Engine, which con-
tains the fault tolerance logic, also needed access to the Service Registry. How-
ever, the existing procedure call connector increased the coupling between those
two components and prevented dynamic adaptation of both components.

This smell was accidentally introduced in MIDAS to solve another challenge
encountered during the implementation. In the original design, the Service Dis-
covery Engine was broadcasting its events to all attached connectors. One of
these connectors enabled the Service Discovery Engine to access peers over a
UDP/IP network. This instance of the Extraneous Adjacent Connector smell
was introduced so that the Service Discovery Engine could directly access the

15

Service Registry, avoiding unnecessary network traffic. However, as discussed,
the introduced smell instance caused the adaptability of the system to decrease.

6 Conclusion

Code smells have helped developers identify when and where source code needs
to be refactored [2]. Analogously, architectural smells tell architects when and
where to refactor their architectures. Architectural smells manifest themselves
as violations of traditional software engineering principles, such as isolation of
change and separation of concerns, but they go beyond these general principles
by providing specific repeatable forms that have the potential to be automati-
cally detected. The notion of architectural smells can be applied to large, complex
systems by revealing opportunities for smaller, local changes within the architec-
ture that cumulatively add up to improved system quality. Therefore, architects
can use the concept (and emerging catalogue) of smells to analyze the most rel-
evant parts of an architecture without needing to deal with the intractability of
analyzing the system as a whole.

Future work on architectural smells includes a categorization of architectural
smells, architectural smell detection and correction processes, and tool support
to aid in those processes. A categorization of architectural smells would include
an extensive list of smells and an analysis of the impact, origins, and ways
to correct the smells. Architectural smells may be captured in an architectural
description language, which would allow conceptual architectures to be analyzed
for smells before they are implemented. Correction of smells would include the
inception of a set of architectural refactoring operations and the provision of tools
to help recommend particular operations for detected smells. In attempting to
repair architectures of widely-used systems, the authors of [23] identified a set
of operations that can be used as a starting point for determining a complete
set of architectural refactoring operations. By trying to correct some of the
architectural smells we found in both our own and others’ experiences, such as
[4] [21] [22] [23], we hope to identify other architectural refactoring operations
and determine which operations are relevant to particular smells.

References

1. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE TSE (Jan 2004)
2. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional (1999)
3. Joshua Garcia, Daniel Popescu, G.E., Medvidovic, N.: Identifying Architectural

Bad Smells. In: CSMR 2009. (2009)
4. Bowman, I., et al.: Linux as a case study: its extracted software architecture. In:

Proc. of the 21st ICSE. (1999)
5. Mattmann, C.A., et al.: The anatomy and physiology of the grid revisited. Tech-

nical Report USC-CSSE-2008-820, Univ. of Southern California (2008)
6. Taylor, R., et al.: Software Architecture: Foundations, Theory, and Practice. John

Wiley & Sons (2008)

16

7. Lippert, M., Roock, S.: Refactoring in Large Software Projects: Performing Com-
plex Restructurings Successfully. Wiley (2006)

8. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging disci-
pline. Prentice-Hall, Inc. Upper Saddle River, NJ, USA (1996)

9. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws.
In: Proc. of the 20th IEEE ICSM. (2004)

10. Lozano, A., et al.: Assessing the impact of bad smells using historical information.
9th IWPSE (2007)

11. Brown, W., et al.: AntiPatterns - Refactoring Software, Architectures, and Projects
in Crisis. Wiley, New York (1998)

12. Garlan, D., et al.: Architectural mismatch or why it’s hard to build systems out
of existing parts. In: Proc. of the 17th ICSE. (1995)

13. Gacek, C.: Detecting Architectural Mismatches During Systems Composition. PhD
thesis, Univ. of Southern California (1998)

14. Abd-Allah, A.: Composing heterogeneous software architectures. PhD thesis,
University of Southern California (1996)

15. Roshandel, R.: Calculating architectural reliability via modeling and analysis. In:
Proc. of the 26th ICSE. (2004)

16. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley (1995)
17. Foster, I., et al.: The anatomy of the grid: Enabling scalable virtual organizations.

IJHPCA 15(3) (2001)
18. Mattmann, C., et al.: Unlocking the Grid. In: Proc. of the 8th CBSE. (2005)
19. Malek, S., et al.: Reconceptualizing a family of heterogeneous embedded systems

via explicit architectural support. In: Proc. of the 29th ICSE. (2007)
20. Seo, C., et al.: Exploring the role of software architecture in dynamic and fault

tolerant pervasive systems. SEPCASE (2007)
21. Godfrey, M.W., Lee, E.H.S.: Secrets from the monster: Extracting mozilla’s soft-

ware architecture. In: Proc. of the Second CoSET. (2000)
22. Gröne, B., et al.: Architecture recovery of apache 1.3 – a case study. In: Proc. of

SERP 2002. (2002)
23. Tran, J., et al.: Architectural repair of open source software. 8th IWPC (2000)
24. Shaw, M., et al.: Abstractions for software architecture and tools to support them.

IEEE TSE (1995)
25. Mehta, N.R., et al.: Towards a taxonomy of software connectors. In: Proc. of the

22nd ICSE. (2000)
26. Tatebe, O., et al.: Grid datafarm architecture for petascale data intensive com-

puting. In: Proc. of the 2nd IEEE/ACM CCGrid. (2002)
27. Kiczales, G., Hilsdale, E.: Aspect-Oriented Programming. Springer (2003)
28. Haase, K.: Java message service tutorial (2002)
29. Oki, B., et al.: The Information Bus: an architecture for extensible distributed

systems. In: Proc. of the 14th ACM SOSP. (1994)

