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Abstract A domain-specific software architecture
(DSSA) represents an effective, generalized, reusable
solution to constructing software systems within a
given application domain. In this paper, we revisit
the widely cited DSSA for the domain of grid com-
puting. We have studied systems in this domain over
the last ten years. During this time, we have repeat-
edly observed that, while individual grid systems are
widely used and deemed successful, the grid DSSA
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is actually underspecified to the point where provid-
ing a precise answer regarding what makes a software
system a grid system is nearly impossible. Moreover,
every one of the existing purported grid technologies
actually violates the published grid DSSA. In response
to this, based on an analysis of the source code, docu-
mentation, and usage of eighteen of the most pervasive
grid technologies, we have significantly refined the
original grid DSSA. We demonstrate that this DSSA
much more closely matches the grid technologies
studied. Our refinements allow us to more definitively
identify a software system as a grid technology, and
distinguish it from software libraries, middleware, and
frameworks.

Keywords DSSA · Physiology · Anatomy · OODT ·
Software architecture

1 Introduction

Over the past half-century, computing has under-
gone several transformations that have fundamentally
changed the manner in which humans use comput-
ers and the nature of problems that can be solved
with computers. Grid computing [1, 2] is a recent
advance that shows promise of enabling another
such transformation. The grid allows virtually any
person or organization to solve a variety of com-
plex problems by utilizing the computing resources
beyond those of just a small cluster of computers.
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Today, grids have been used successfully in sev-
eral domains, including cancer research [3], plane-
tary science [4], earth science [5], and astrophysics
[6, 40, 44].

Over the past several years, a number of tech-
nologies have emerged, claiming to be grid tech-
nologies or grid platforms (e.g., see Table 1). Our
own work resulted in two related such technologies.
The first, Apache OODT [7], is a data grid plat-
form currently in use at NASA and National Cancer
Institute’s Early Detection Research Network. The
second, GLIDE [8], is a mobile grid platform. The
early literature also resulted in several “big picture”
publications that tried to establish the underlying prin-
ciples of the grid: its “anatomy” [2] and “physiol-
ogy” [1], which describe the grid’s software architec-
ture, as well as its overarching requirements [9–15].
Even though their authors likely did not view them
that way, these reference requirements and architec-
ture together comprised a domain-specific software
architecture (DSSA) [16] for the domain of grid
computing.

However, the publications in this area have had
some common shortcomings. The specific technolo-
gies have been unclear as to what traits make
them suitable for grid computing. This is in part
because the “big picture” publications have invari-
ably lacked rigor and have been open ended in
their characterization of the grid; additionally, many
were inspired by their authors’ experience drawn
from a single approach whose broader applicabil-
ity is questionable. We have experienced first-hand
the potential confusion stemming from this: our ini-
tial attempt at publishing the work behind GLIDE
[8] yielded reviews stating that GLIDE is not a
grid platform, but rather “a simple object-oriented
framework”.

We were puzzled by this as GLIDE shares many
concepts with the highly successful OODT. In order
to be able to refute such criticisms, however, we
needed to understand intimately what constitutes a
grid platform. In other words, we needed to have a
precise understanding of the grid’s DSSA. To that
end, nine years ago we commenced a pilot study [17]
in which we attempted to extract the subset of the
architectural principles underlying the grid from the
grid’s published “anatomy” [2]. We then recovered,
using the source code and existing documentation,

the architectures of five widely used grid technolo-
gies, and compared those architectures to the anatomy.
While it was difficult to draw definitive conclusions
given the scope of that study, we observed a num-
ber of discrepancies that suggested that the published
anatomy of the grid is not reflective of the existing grid
systems.

These discrepancies served as an impetus to spend
the next six years significantly expanding the study.
We report on our results in this paper. We first elab-
orated the proposed grid DSSA by revisiting the
architecturally relevant aspects of the grid’s published
“anatomy” [2] as well as its “physiology” [1]. We
then analyzed the source code, documentation, and
usage of eighteen widely deployed grid technologies,
including the five from our pilot study, in order to
recover their architectures and compare them to the
published grid DSSA. As in our pilot study, these
technologies departed heavily from the grid’s DSSA.
This reinforced our suspicion that proposing a DSSA
before sufficient experience with constructing systems
in the domain is amassed, as the progenitors of the
grid have done, is risky and error-prone. At the same
time, the study enabled us to generalize from the spe-
cific experience [18] of the analyzed grid technologies
and to propose a more accurate reference architec-
ture for the grid. We argue that our DSSA is a much
better fit for the domain of grid computing. Further-
more, the new DSSA enables us to categorize grid
technologies and identify the extent to which a candi-
date technology can be considered a “grid”. Though
recent studies by Rimal in 2011 [41], Montes in 2012
[42] and Shamsi [43] in particular have attempted to
pinpoint grid (and cloud) architectural requirements
our study in particular advances the state of the art by
not just identifying similar requirements, but actually
using the requirements (and recovered architectural
techniques) to prescribe a accurate canonical grid
architecture representative of the grid technologies
studied.

The remainder of the paper is organized as follows.
Section 2 highlights related studies in understanding
grid technologies, clouds, and architectural recovery.
Section 3 summarizes the results of our analysis of
grid technologies. Section 4 presents our new grid
DSSA and demonstrates that it provides a significantly
better fit than the previously published DSSA for the
systems we studied. Section 5 presents the lessons we
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Table 1 The studied grid technologies

Technology PL KSLOC #ofModules URL

Alchemi C# (.NET) 26.2 186 http://www.alchemi.net

Apache Hadoop Java, C/C++ 66.5 1643 http://hadoop.apache.org

Apache HBase Java, Ruby, Thrift 14.1 362 http://hadoop.apache.org/hbase/

Condor Java, C/C++ 51.6 962 http://www.cs.wisc.edu/condor/

DSpace Java 23.4 217 http://www.dspace.org

Ganglia C 19.3 22 http://ganglia.info

GLIDE Java 2 57 http://sunset.usc.edu/∼softarch/GLIDE/

Globus 4.0 (GT 4.0) Java, C/C++ 2218.7 2522 http://www.globus.org

Grid Datafarm Java, C 51.4 220 http://datafarm.apgrid.org/

Gridbus Broker Java 30.5 566 http://www.gridbus.org/

Jcgrid Java 6.7 150 http://jcgrid.sourceforge.net/

OODT Java 14 320 http://oodt.jpl.nasa.gov

Pegasus Java, C 79 659 http://pegasus.isi.edu

SciFlo Python 18.5 129 http://sciflo.jpl.nasa.gov

iRODS Java, C/C++ 84.1 163 https://www.irods.org/

Sun Grid Engine Java, C/C++ 265.1 572 http://gridengine.sunsource.net/

Unicore Java 571 3665 http://www.unicore.eu/

Wings Java 8.8 97 http://www.isi.edu/ikcap/wings/

learned in the process. Finally, Section 6 concludes the
paper.

2 Background and Related Work

In this section, we first discuss existing studies of the
grid. We then provide an overview the architectural
recovery techniques used in this research.

2.1 Studies of the Grid and Cloud

Two seminal studies that have tried to under-
pin and motivate grid technologies have been
by Kesselman and Foster, highlighting the grid’s
anatomy [2] and physiology [1]. The two com-
prise the grid’s DSSA. In the interest of brevity,
we will only summarize the key facets of the
DSSA.

The anatomy of the grid is defined as a five-layer
architecture with several over-arching requirements.

(1) Application – The top-most layer houses custom
applications that plug into the common services
of an underlying grid infrastructure.

(2) Collective – The next layer aggregates underly-
ing Resource layer services, agglomerating infor-
mation such as resource monitoring statistics, job
status, and metadata for a given grid application.

(3) Resource – This layer encapsulates underly-
ing heterogeneous computing resources (such as
files, disks, I/O, etc.) and provides a standard
interface for communicating with grid services.

(4) Connectivity – This layer is responsible for pro-
viding security, communication, and coordina-
tion of access from grid resources to underlying
physical resources present in the bottom-most
grid layer.

(5) Fabric – The bottom-most layer’s elements
include low level DBMS, disk I/O, threading and
other OS-like resources, available from individ-
ual nodes in a grid.

As described in [2], the anatomy disallows “upcalls”,
i.e., inter-layer interaction initiated by a lower layer.
The anatomy is ambiguous as to whether it is pos-
sible to “skip” layers, i.e., whether interactions can
involve non-neighboring layers; the most widely ref-
erenced diagram from [2] implies that the layers are
opaque. Finally, the nature of inter-layer interactions
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(i.e., connectors [19]) is not elaborated; all interactions
are treated as direct (local or remote) procedure calls.

The physiology of the grid focuses its attention on
the Resource layer the grid reference architecture. It
defines the core requirements and canonical services
for grid resources. Each grid service defines five core
interfaces: (1) service registration, which allows a grid
service to register itself with a service registry; (2)
service location, which enables service/resource dis-
covery; (3) service lifecycle management, defining a
core set of stages in a grid service; (4) introspection,
which allows grid service capabilities to be dynam-
ically discovered; and (5) service creation, allowing
new grid services to be dynamically created and made
available at runtime.

Although the published anatomy and physiology do
much to lay the groundwork for grid software sys-
tem architectures and have been very widely, often
uncritically, cited, they do not readily make the dis-
tinction between grids on the one hand and traditional
software libraries, middleware, and frameworks on the
other [17] – though recent studies e.g., [41, 42] have
indeed distinguished some of the differences in grids
and cloud computing at various phases (requirements)
and elements (components) of software.

Cloud computing involves distributed resource
sharing and on-demand elastic scalability in a multi-
tenant computing environment – similar to grid com-
puting. Rimal et al. [41] identify these similarities
and discuss clouds both from the vendor [46] and
standards perspective [45]. The authors identify sev-
eral areas in which grids and clouds are different:
(1) focus; (2) resource pattern; (3) management; (4)
business model; (5) interoperability, and (6) middle-
ware. Rimal et al. state that the cloud application-
programming interface (API) is still the biggest con-
cern area, similar to the early days of grids – and
further study is required in areas such as data manage-
ment; maximization of bandwidth, interoperability,
and QoS. Similar to our study, Rimal et al. extract
requirements common to clouds and grids, categorize
them as functional (measurable), or non-functional
(qualitative), and map the requirements to compo-
nents in clouds and grids. Our study complements and
expands Rimal et al.’s work by further identifying a
new architecture derived from the examined code of
software systems, and by providing a basis for fur-
ther study of architectural styles for grids and clouds,

which were only anecdotally discussed in Rimal et
al.’s paper.

Even though differences between grids, middle-
ware, clouds, etc. have been studied there remains sig-
nificant overlap of functionality and concerns between
different grid layers, Resource and Fabric being the
most notable example. Finally, as we have demon-
strated previously [17], existing grid technologies
regularly violate the reference architecture.

A handful of other studies have been conducted in
this area. Unlike our study, however, they have been
based entirely on system documentation, usage data,
and technical papers. They corroborate several of our
observations, although they have tended to contradict
one another.

Shamsi et al. [43] provide a thorough systems sur-
vey and classification of the extensive requirements of
data intensive clouds. Their study identifies challenges
and requirements for data-intensive systems and fur-
ther studies how compute clouds can support these
environments. The authors derive fifteen requirements
of data intensive systems / clouds including: (1) Scal-
ability; (2) Availability and Fault Tolerance; (3) Flex-
ibility and Efficient User Access; (4) Elasticity; (5)
Sharing; (6) Heterogeneous Environment; (7) Data
placement and locality; (8) Effective data handling;
(9) Effective storage; (10) Support for Large data sets;
(11) Privacy and access control; (12) Billing; (13)
Power Efficiency; (14) Efficient Network Setup; (15)
and Efficiency. About 67 % of these requirements
exhibit overlap with the requirements identified in
Table 1 from our prior study [17] whereas 33 % of
them have no direct mapping present and are either
directly related to cloud computing advances (e.g.,
Billing) or to advances related to data and compute
intensive increases (e.g., Power Efficiency; Support
for Large Data sets). Similar conclusions related to
grid and cloud requirements come from Begeman et
al. [40] who are concerned with grid data provenance
and data locality, and encapsulation of a researcher’s
data within a grid for reproducibility purposes.

Many of the recent studies on grids and clouds
identify increased Quality of Service (QoS) as one of
the key foci for clouds as different from grids, for
example the study by Montes et al. [42]. The authors
explain that over the years many of the issues in grid
computing are derived from technical and political
underpinnings – the political issues stem from agen-
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cies and organizations sharing and trusting resources;
and the technical issues can be summed up as relat-
ing to “complexity”. Clouds are suggested as one
means of addressing this complexity issue in grids.
The authors define a service-level system management
model for clouds and grids pinpointing a key differ-
ence related to grids focusing on the structure element
of that model (e.g., virtual organizations), whereas
clouds focus on the function element of the model,
e.g., with a focus on particular services, and applica-
tions - this conclusion is consistent with our own prior
study [47], as well as the outcomes identified in this
paper.

Finkelstein et al. [20] study data grid systems,
which deal mainly with large-scale data management,
processing, and dissemination. In the study, thirteen
data grid systems are compared along the dimensions
of five architectural styles, such as client/server and
peer-to-peer [19]. The authors conclude that, of the
thirteen systems examined, only two appear to sup-
port the layered architectural style (globus2 [2] and
the European Data Grid [21]). In addition, Finkel-
stein et al. observe that, while the non-functional
grid requirements are fairly well specified, the func-
tional grid requirements are quite broad. This is
consistent with Rimal et al. who identify 14 non-
functional requirements, 3 functional/non-functional
requirements (overlapping) and 5 functional require-
ments in Table 5 of their paper [41].

Venugopal et al. [22] identify eight key character-
istics that data grid systems must support: prolifera-
tion of data, geographical distribution, single source,
uni?ed name space, limited resources, local autonomy,
access restrictions, and heterogeneity. In contrast to
Finkelstein et al., the authors argue that each of these
characteristics is naturally mapped to a four-layer data
grid reference architecture. This architecture is con-
ceptually similar to the grid’s five-layer DSSA, except
that it delegates the functionality of the Resource layer
to the grid Fabric layer. In addition, this mapping is
significantly coarser grained than requirements map-
pings efforts present in the studies by Shamsi et al.
[43] and by Rimal et al. [41]. Our own study also sig-
nificantly expands this classification by introducing a
more accurate grid architecture.

Finally, Yu and Buyya [23] focus on grid workflow
systems. According to the authors, grid workflow sys-
tems can be classified along five dimensions, namely,

support for workflow design, information retrieval,
workflow scheduling, fault tolerance, and data move-
ment. The authors classify ten grid workflow technolo-
gies along these dimensions and their sub-dimensions
(omitted for brevity). In contrast to Finkelstein et al.’s
study, one of Yu and Buyya’s key conclusions is that
QoS requirements for grid workflow applications are
ill defined and rarely addressed in the systems they
studied – though this topic is somewhat covered by
Begeman et al. [40] in a single domain (astronomy).

2.2 Architectural Recovery

Architectural recovery is the process of elucidating a
software system’s architecture, most frequently from
source code, but also from other available artifacts
[24, 25]. A full treatment of architectural recovery
is beyond the scope of this paper. Here, we will
briefly discuss the applicability of architectural recov-
ery and the techniques we have employed in our
work.

Numerous automated architectural recovery tech-
niques deal with code dependency analysis (i.e., static
analysis), recovering relationships such as association,
composition, and generalization for object-oriented
(OO) code, and recovering software trace dependency
relationships, such as function calls, ownership rela-
tions, and module dependencies for procedural code.
Two representative static analysis architectural recov-
ery techniques are Rigi [26] and PBS [27]. In our
work, we leverage these techniques for understand-
ing code-level dependencies in the grid systems we
studied.

In order to recover a software system’s archi-
tecture, static code dependency analysis is typically
too fine-grained and requires abstraction into higher-
level architectural components. Numerous such tech-
niques have been developed [25]. For the purposes
of our study, we are leveraging Focus [28], which
is particularly well-suited for capturing complex sys-
tem interactions, such as those found in the grid,
in the form of software connectors, in addition to
first-class components and architectural styles. Focus
clusters system modules recovered via static analysis
using a set of rules based on coupling and cohe-
sion properties such as (a) two-way dependencies,
(b) aggregation, (c) association, and (d) the identi-
fication of classes with large numbers of incoming
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and outgoing dependencies. As each of these four
types of relationships is identified, Focus suggests
how the relevant modules can be grouped into archi-
tectural components. Focus also suggests methods
for examining the interaction mechanisms (i.e., con-
nectors) that exist between the architectural compo-
nents. Finally, Focus allows one to assess the fit of a
candidate architectural style to a partially recovered
architecture .

3 Deconstructing Grid Technologies

In order to improve our understanding of the grid and
try to determine what constitutes a grid technology,
we examined the available information from eighteen
widely used grid technologies, summarized in Table 1.
In the table, the column PL indicates the grid technol-
ogy’s primary implementation language(s); KSLOC
identifies the size of the technology computed using
the software lines of code (SLOC) counting tools
CCCC [29] and Sloccount [30]; and #ofModules indi-
cates a count produced by CCCC of all classes and any
other modules for which member functions could be
identified. CCCC provides basic code counting met-
rics (lines versus comments; information flow, etc.)
and Sloccount expands on this providing time esti-
mates and other relevant data. While we collected
a tremendous amount of data in the process, we
can only summarize our findings here; the interested
reader can find the unabridged results of our study
in [31].

We studied these technologies in light of the pub-
lished DSSA [1, 2]. Similar to Klaus et al. [32], in our
selection we tried to distinguish between:

(1) Computational Grid Systems – These types of
grid systems traditionally focus on complex,
large-scale computational problems, such as sci-
entific workflows, distributed image process-
ing, earthquake analysis, and the like. Examples
of such technologies include Alchemi, Hadoop,
Condor, Globus, Gridbus Broker, Jcgrid, Pega-
sus, SciFlo, Sun Grid Engine, Unicore and
Wings. Requirements addressed by these tech-
nologies based on classification by Shamsi et al.
[43]: Scalability; Availability and Fault Toler-
ance; Flexibility and Efficient User Access; Elas-
ticity; Sharing; Heterogeneous Environment;

Power Efficiency; Efficient Network Setup; Effi-
ciency.

(2) Data Grid Systems – These types of grid systems
regularly collect, manage, and disseminate large
amounts of data and metadata. Data grid sys-
tems may have a compute element to them (e.g.,
small amount of processing to convert/transform
data), as may compute grids deal with data (mes-
sages passed between components, not requiring
of large and concurrent data access or move-
ment), however, here we simply differentiate
their respective foci. Examples of such tech-
nologies include HBase, DSpace, GLIDE, Grid
Datafarm, iRODS, and OODT. Requirements
addressed by these technologies based on clas-
sification by Shamsi et al. [43]: Data placement
and locality; Effectivedata handling; Effective
storage; Support for Large data sets; Privacy
and access control;

(3) Grid Monitoring Systems – These types of sys-
tems provide capture, analysis, logging, and
visualization of monitoring data aggregated from
grid resources, such as web services (state infor-
mation) and Fabric layer resources (e.g., hard-
ware characteristics) across a set of nodes avail-
able via the grid. Grid monitors may themselves
be present in data and/or compute grids – for
example we studied one such pure grid monitor-
ing system, Ganglia, although several other grid
systems (e.g., Hadoop and Hbase) also contain
monitoring components. Other systems includ-
ing Splunk [48] are also similar examples, though
due to page and time constraints are not covered
in this paper. Requirements addressed by these
technologies based on classification by Shamsi et
al. [43]: Scalability; Availability and Fault Toler-
ance; Power Efficiency; Efficient Network Setup;
Efficiency

We realize that our three-category classification is
coarse grained at this stage, but we note it represents
an initial step derived from studying many grid sys-
tems and from our prior [17] study of compute/data
grid requirements along with classifications derived
from Shamsi et al. [43]. We will revisit the issue of
grid categories in Section 4.

To select grid technologies across each of these
three areas, we applied four criteria: (1) the system
should be open source, so that we could analyze its
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source code; (2) the system should have available doc-
umentation to supplement source code analysis; (3)
the technology should be actively used; and (4) the
system should claim to be a grid. Because of the
well known problem of architectural erosion [19] and
the demonstrated unreliability of system documen-
tation alone (e.g., [33]), we decided to reconstruct
each system’s as-implemented architecture from its
source code and compare it with the published grid
DSSA.

Since each grid technology we examined was open
source, we were able to analyze and visualize its
source code using static analysis tools. One challenge
we faced was that, as can be seen in Table 1, the stud-
ied grid systems were implemented in a number of
programming languages, including C/C++ (present
in 44 % of the technologies), Java (83 %), Ruby (5
%), Thrift (5 %), and Python (5 %). Another chal-
lenge was that the static analysis tools vary in quality
and tend to give incomplete results (e.g., see [34]).
We typically applied multiple tools on the same grid
system to ensure that we are correctly extracting as
many static relationships as possible. In the process,
we used or attempted to use over 20 static analy-
sis tools (including, e.g., Rigi [26], PBS [27], and
SHrIMP [35]). We found that four tools were able to
extract the bulk of the static dependencies for each
grid technology: Rational Software Architect (RSA)
[36], ArgoUML [37], Understand [38], and DoXYGen
[39]. A detailed evaluation of the respective strengths
of each static analysis tool is outside of this paper’s
scope.

To fill in the “gaps” in our understanding of a
given grid technology’s architecture, whenever nec-
essary we supplemented the information obtained via
automated analysis with available documentation and
manual inspections of the source code. Finally, we
applied Focus [28] to identify the system’s architec-
tural components, connectors, and style(s), as out-
lined in Section 2.2. The above process resulted in
architectural models for each of the eighteen grid
technologies.

Our ensuing step involved “shoe-horning” each of
the recovered grid components and their interactions
(i.e., connectors) into the five-layered grid architec-
ture, using the grid’s anatomy and physiology [1, 2]
as a guide. Figure 1 shows the results of this step for
four grid technologies: Wings, Pegasus, Hadoop, and

iRODS. Due to space constraints, we will illustrate
our findings with results from these four technolo-
gies; for the details of the architectural recovery of
all eighteen grid technologies are given in [31]. Shoe-
horning was performed manually by: (1) inspecting
the as-stated requirements for each grid’s documenta-
tion; (2) using requirements classified by each layer
of the grid architecture to place recovered compo-
nents and interactions; and (3) observing behavior by
running/testing out the studied grid technologies. A
complete treatment of architectural recovery is outside
the scope of this paper though we recommend [24] for
further study. The shoe-horning process was empiri-
cally validated through the suggestion of a new grid
architecture that reduces style violations, and that we
believe more accurately represents the nearly twenty
real-world grid systems studied.

During the shoe-horning process, we repeatedly
encountered four types of discrepancies between the
as-implemented architectures of the grid technologies
and the grid’s DSSA:

(1) empty layers – layers identified in the grid’s
anatomy that contained no recovered compo-
nents, an example of which is highlighted for
Wings in Fig. 1a;

(2) skipped layers – components in one layer make
calls to components at least two layers below or
above, such as the example for Pegasus high-
lighted in Fig. 1b, which spans the entire archi-
tecture;

(3) upcalls – calls made from components in a lower
(“servicing”) layer to components in a higher
(“client”) layer, such as the example for Hadoop
highlighted in Fig. 1c; and

(4) multi-layer components – components that pro-
vided services which, according to the published
grid DSSA, belong to two or more layers, e.g., as
shown highlighted for iRODS in Fig. 1d.

In addition to these four types of discrepancies, in
several cases we also identified orphaned compo-
nents, whose exact location in the grid architecture
we were unable to determine based on the available
information. An example is shown for Pegasus on the
right side of Fig. 1b. Orphaned components typically
indicated the presence of test classes, templates, and
other functionality not intended to be part of the core
system.
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As can be seen from Table 1, the studied sys-
tems’ sizes varied widely, from 2 KSLOC to over
2 MSLOC, and from 22 to over 3600 identifiable
modules. Each grid technology also varied widely in
the number of violations of the grid DSSA. As an
example, in Wings (Fig. 1a), which has 97 original
modules and around 9 KSLOC, we observed three
types of discrepancies: 6 upcalls, 10 skipped layers,
and 1 empty layer (Connectivity); in addition, Wings
also had an orphaned component (WingsUtil). On the
other hand, in Pegasus, a much larger system (almost
10x as many SLOC and 7x as many modules), we
noted about half as many discrepancies: 3 upcalls
and 5 skipped layers; Pegasus also had six orphaned
components, which we attribute to the fact that, as
a larger system, it had more utility modules than
Wings.

We have found a similar lack of correlation between
a grid system’s size and its adherence to the grid
DSSA throughout our study. Another example is
Hadoop, with 66 KSLOC and over 1643 modules:
it had only 2 upcalls and 6 skipped layer violations.
On the other hand, iRODS, which was of compara-
ble size (84 KSLOC) but had 10x fewer code-level
modules (163), had 35 upcalls, 51 skipped layer vio-
lations, and 2 multi-layer components. In fact, iRODS
had the most problematic architecture of the eigh-
teen systems we studied, as can probably be gleaned
from Fig. 1: it had at least 2x as many upcalls and 4x
as many skipped layer violations as any of the other
technologies.

Overall, the most prevalent discrepancies identified
in all grid technologies were upcalls and skipped lay-
ers (a total of 242), as indicated in Table 2. Each
studied grid technology’s architecture used upcalls
(a total of 98 across the eighteen technologies) and
all but one (Condor) skipped layers (a total of 144
across the eighteen technologies). This suggests that,
as conceived in the grid DSSA, the layers share
concerns and are ultimately less orthogonal than
intended. Furthermore, as described in [1, 2] and
summarized in Section 2, the layered architecture
is conceptually abstract, failing to document both
the types of grid components that should reside in
each layer and the many complex and important
interactions between those components that would
be required for a sound analysis of grid properties.
While not as pronounced, the presence of other iden-
tified violations—multi-layer components (a total of

18 across the eighteen technologies) and empty lay-
ers (a total of 5)—served to reinforce our conclusion
that the existing grid architecture required further
refinement.

In the next section, we describe our refinement
of the grid DSSA and present the results of shoe-
horning the existing grid technologies into the new
DSSA.

4 Reconstructing the Grid DSSA

When Foster, Kesselman, and others introduced the
anatomy and physiology of the grid, they, in fact, pre-
sented a prescriptive architecture [19] based on their
experiences with the Globus toolkit. Even though the
Foster and Kesselman papers were lacking in low
level implementation detail, by recovering the archi-
tectures of eighteen different grid technologies and
comparing them to the original prescriptive architec-
ture, we provide a gap analysis and additionally a
concrete mapping between Foster and Kesselman’s
high level prescription, what was implemented over
the last decade, and ultimately where we are today.
From this, we are able to create a new DSSA that more
faithfully describes and effectively differentiates grid
technologies. Section 4.1 explains the building blocks
and interconnections of this new DSSA. Section 4.2
describes the different architectural styles and inter-
action types of grid systems. Section 4.3 provides a
classification of grid systems with respect to the new
DSSA.

4.1 Structure of the Proposed DSSA

Figure 2 shows a structural view of the new grid
DSSA. The main logical building blocks of the DSSA
are software components that belong to four subsys-
tems: Application, Collective, Resource, and Fabric.
The new DSSA borrows and, as appropriate, modifies
the terminology of the different grid subsystems (lay-
ers in the original DSSA) in order to better reflect the
knowledge we extracted from the as-implemented grid
architectures. On the other hand, we have departed
from the layered organization, as it clearly was not
an appropriate fit for the grid. Each identified compo-
nent within the four subsystems in Fig. 2 has distinct
responsibilities, which together form the grid. Our
DSSA also describes the allowed interaction (i.e.,
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Fig. 1 Representative discrepancies identified in four of the studied grid technologies

connector) types between the different component
types.

Application Components An Application can be any
client that needs grid services and is able to use
an API that interfaces with Collective or Resource
components.

Collective Components The Collective components
are the unique feature of the grid, distinguishing it
from other service-oriented architectures – the Col-
lective is the core layer that allows for the creation
of virtual organizations. Other service-oriented archi-
tectures have Resource layer components, but they
are confined to a single organization. The Collec-
tive components are used to orchestrate and distribute
data and grid jobs to the various available resources
in a manner consistent with the security and trust

policies specified by the institutions within a grid sys-
tem (i.e., the virtual organization [2]), the computing
resources they share, and the sharing policies specified
by them. Collective components can provide the fol-
lowing services: planning (e.g., where the data should
be stored), query federation, job scheduling (e.g., to
which nodes should individual tasks be assigned),
maintaining grid metadata (e.g., storing addresses of
individual nodes in the grid), collection and aggre-
gation of monitoring data (e.g., measuring average
utilization of the grid), and resource registration and
discovery.

Resource Components The Resource layer of the
original grid DSSA was defined as a set of pro-
tocols that build on the protocols of the Connec-
tivity layer for the purpose of managing individual
resources. However, components in the recovered
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architectures do not manifest themselves as protocols.
Therefore, in the new DSSA, Resource components
are defined as the components that perform individ-
ual operations required by a grid system by lever-
aging available lower-level Fabric components (e.g.,
storing part of a file submitted to a DFS using capa-
bilities of the local file system). Specific services
of Resource components include managing creation
and destruction of grid service instances, performing
inspection on grid service instances, and providing
data being monitored by Collective or Application
components.

Fabric Components Fabric components offer lower-
level access capabilities to computational and data
resources on an individual node (e.g., access to
file-system operations). Fabric components often
do not provide any grid-specific functionality and,
therefore, can also be used by traditional software
systems.

Our examination of the recovered architectures
revealed that the Connectivity layer described in
the original grid DSSA does not actually exist as
such. As described, the Connectivity layer provided
communication and authentication protocols such as
TCP/IP or Transport Layer Security (TLS) to facilitate
data exchange between Fabric components. How-
ever, the grid architectures that we recovered indi-
cate that Fabric components never interact across
distributed nodes. On the other hand, the Applica-
tion, Resource, and Collective components all use
the Connectivity protocols, causing a large num-
ber of violations of the layered style. Given these
observations, the new DSSA eliminates the Connec-
tivity layer as a subsystem, encapsulating its func-
tionality in the explicit connectors, as discussed in
Section 4.2.

The new DSSA offers further design guidance by
specifying a mapping of the conceptual components
described above to the hardware nodes that house
them and their associated multiplicities. It was unclear

Fig. 2 Structural view of
the new grid reference
architecture
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Table 2 Grid reference architecture discrepancies in the studied technologies

Technology UC SL ML EL

Alchemi 2 2 2 0

Apache Hadoop 2 6 0 1

Apache HBase 5 7 0 0

Condor 2 0 0 0

DSpace 1 4 1 0

Ganglia 2 1 0 1

GLIDE 2 5 0 0

Globus 4.0 6 4 5 0

Grid Datafarm 12 16 0 0

Gridbus Broker 4 3 0 1

Jcgrid 4 7 0 0

OODT 3 6 1 0

Pegasus 3 6 6 0

SciFlo 1 1 0 0

iRODS 35 51 2 0

Sun Grid Engine 2 2 0 1

Unicore 6 13 0 0

Wings 6 10 1 1

Totals: 98 144 18 5

UC = upcalls; SL = skipped layers; ML = multi-layer components; EL = empty layers

in the original reference architecture how the five
layers map to physical nodes. The studied grid tech-
nologies show that Resource, Collective, and Applica-
tion components are typically deployed on different
physical nodes, but that other deployments are also
allowed.

In grid systems there is typically a central Collec-
tive component deployed onto a single reliable node
that is responsible for maintaining the grid metadata.
This central component may also perform most of
the planning, scheduling, monitoring, etc. efficiently
and with a low-likelihood of failure. To decrease the
utilization of the central node, grid system design-
ers can also choose to deploy remaining Collective
components on other system nodes (e.g., the job exe-
cution component can be deployed on a different node
than the scheduling component). Resource compo-
nents are typically deployed onto individual nodes in
computational clusters, servers, workstations, or PCs
where each node provides the computational and/or
data storage resources that grid applications will use.
To increase efficiency, cacheable versions of Col-
lective components may be deployed onto Resource

nodes or clusters of nodes as needed. Any compo-
nent may use the Fabric components available on its
local node, but not the Fabric components of remote
nodes.

4.2 Interactions in the New DSSA

The original DSSA was described using only the lay-
ered architectural style. Our investigation indicated
that there are four prevalent architectural styles in the
grid technologies we studied: (a) client/server, which
is the main interaction style between Application and
Collective components as well as between Application
and Resource components; (b) peer-to-peer, where the
peers of the grid system are typically Resource com-
ponents; (c) layered, where the Fabric subsystem of
a node provides low-level services to grid-specific
components on that node; and (d) event-based, which
is largely represented by event notifications such as
job completion or heartbeats from Resource compo-
nents to Collective components. These styles more
accurately separate and capture the key interactions
occurring across the subsystems of a grid system and,
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as we will elaborate in Section 5, reduce the vio-
lations induced by the originally prescribed layered
architectural style.

The client/server style accurately describes the
interaction dependencies originating from Applica-
tion components. Application components may submit
grid jobs to the Collective components, request moni-
tored data from Collective components, or issue meta-
data queries to help efficiently perform an operation.
For instance, an Application component may need
to request from a Collective component the location
of Resource components that the Application wants
to access directly. Once this information is received,
the Application can directly connect to the needed
resource to achieve better network performance.

The need for distributed Resource or Collective
components to communicate with each other across
nodes in the form of load balancing, data replica-
tion, etc. is an afterthought in the original grid. The
new DSSA, on the other hand, captures this communi-
cation as peer-to-peer interactions. Resource compo-
nents need to send metadata queries to Collective com-
ponents to discover information about other Resource
components. This location information is then used
by a Resource component to make requests to other
Resource components (e.g., one Resource component
requesting portions of files from another in Grid
Datafarm). Collective components also communicate
with other Collective components in a peer-to-peer
manner (e.g., in Hadoop, the component JobTracker,
which is responsible for distributing computational
jobs, calls NameNode, which is responsible for data
distribution, to obtain data needed for planning
tasks).

The event-based style naturally captures the need
for components to send asynchronous messages across
the network to achieve parallel execution. Resource
components, in particular, may need to send mes-
sages to notify Collective components of service state
changes (e.g., in the form of heartbeats and resource
utilization data in Alchemi).

Finally, the layered style is retained solely on indi-
vidual nodes where components can request services
from the Fabric components of their local machines.
For example, both Hadoop and iRODS have filesys-
tem Fabric components that are used by Collective
and Resource components.

4.3 Classification of Grid Systems

Unlike the original grid DSSA, our reference architec-
ture describes all the components and services needed
to create a grid. In particular, all the Collective and
Resource components (with one exception, discussed
below), plus an API for Application components to
interface with these components, are required to cre-
ate a complete grid – and in turn this work contributes
further understanding into Grid and cloud APIs as
identified by Rimal et al. [41]. These two kinds of
components directly enable the concept of virtual
organizations, which distinguishes grids from other
types of distributed computing platforms (e.g., frame-
works and middleware). Variations of the Collective
and Resource components in the grid technologies we
studied result in three grid categories: computational,
data, and auxiliary grids (e.g., monitors and other
grid supporting components). The computational and
data grid categories denote complete grids, while the
auxiliary grids category denotes systems that use and
augment grids, but are not complete grids by them-
selves.

Computational and data grids are distinguished
mostly by the instances of their Resources compo-
nents and, to a lesser degree, by the types of Collective
components they instantiate. Resource components of
computational grids provide services for execution
of parallel jobs or tasks (e.g., executors in Alchemi),
while Resource components of data grids provide
services for accepting operations to be performed
on segments of a single conceptual repository (e.g.,
filesystem daemons in Grid Datafarm). All Collec-
tive component services depicted in Fig. 2 must be
implemented in the case of computational grids (e.g.,
Alchemi and Wings). Data grids, on the other hand, do
not have schedulers, but are highly reliant on a meta-
data repository for the entire grid system, as shown in
Fig. 2.

Some grid systems claim to be both compu-
tational and data grids, e.g., Gridbus Broker and
iRODS. In that case, Resource components must be
capable of providing services either to perform oper-
ations on a storage repository or to execute a job or
task. For example, Gridbus Broker achieves this muta-
bility of Resource components by having them be
wrappers around other grid systems such as Alchemi
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or Globus, while iRODS Resource components pro-
vide “microservices” that can be workflow-related or
related to data storage and retrieval.

All services of the Collective components in the
new DSSA must be implemented in order for a tech-
nology to be classified as a complete hybrid (data
and computational) grid. Gridbus Broker implements
all such services. However, iRODS is not a full com-
putational grid because it has no means of creating
execution-independent workflow instances provided
by planning and scheduling components.

The final grid category, auxiliary grids, does not
contain complete grid systems. Auxiliary grids imple-
ment a small number of Collective components,
but do not implement all the services described in
Section 4.1. For example, Ganglia implements a mon-
itoring component, contains no other Collective com-
ponents, and uses other grid nodes as its Resource
components.

5 Evaluation of the New Grid DSSA

Our suggested reference architecture eliminated 85
% of the architectural discrepancies described in
Section 3 and shown in Table 2 by (1) identify-
ing style-related interactions as first-class connectors,
(2) removing the superfluous Connectivity layer, (3)
explicitly addressing deployment, and (4) properly
reclassifying components according to the new refer-
ence architecture’s subsystem definitions.

A great majority of the upcalls and skipped-layer
calls we discovered in the grid technologies (242
total as shown in Table 2) were rectified by iden-
tifying client-server and event-based styles as key
parts of a grid architecture. Client-server interactions
allow efficient communication of data between an
Application component and a Resource component
(e.g. DFSClient requesting data from a DataNode in
Hadoop as depicted in Fig. 3). Likewise, Resource
components acting as clients may request data from
Collective components acting as servers. For example,
any of the iRODS Microservices shown in Fig. 3 may
request rule execution information or other metadata
from the Server Rule Engine. This metadata provides
Resource components with the necessary location
information to facilitate connections to other Resource

components. In the case of iRODS, most of the com-
munication from Resource components to Collective
components (note that these were most of the upcalls
according to the original DSSA) results from requests
for metadata.

While client-server interactions explained away
some upcalls, event-based communication explained
away others. Many upcalls originating from Resource
components to Collective components represent event
notifications in the form of registration events, heart-
beats, monitoring events, and service state changes.
Examples of such notifications include the Task-
Tracker component sending monitoring events to the
JobTracker component in Hadoop (see Fig. 3) and
heartbeat messages sent from Resource components to
Collective components in Alchemi.

System deployment guidance provided by the new
DSSA also plays an important role in reducing the
number violations in the recovered architectures. In
particular, some systems deploy Collective compo-
nents along with Resource and Fabric components on
the same node. iRODS, for example, replicates Collec-
tive components on each node of the system except for
a single reliable node that houses the metadata repos-
itory. This deployment of Collective and Resource
components on the same node allows the two types
of components to share access to Fabric components.
Consequently, the fact that Fabric components can be
called by any local component eliminated all 51 dis-
crepancies originally attributed to skipped layers in
iRODS.

Even after shoehorning them into the new DSSA,
the grid technologies still contained interactions pro-
hibited by the various styles present in the DSSA
(these correspond to upcalls and skipped layers in
the original DSSA). However, the number of discrep-
ancies was both much smaller than the original 242
(42 total) and we found no discrepancies in nine of
the technologies. A recurring example of illegal inter-
actions was a component in the Fabric subsystem
invoking a component in one of the other subsystems.
iRODS, with its highly interconnected architecture,
was the biggest single culprit, with 13 such discrep-
ancies (which was still significantly lower than the
86 it appeared to have when shoe-horned into the
old DSSA). Another, somewhat less common exam-
ple was a component in the Application subsystem
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(a) (b)

(c) (d)

Fig. 3 Shoe-horning grid technologies into the new grid reference architecture

directly communicating with a Fabric component on
another node. Wings, with 4 such interactions, and
Jcgrid, with 6, accounted for all instances of this type
of discrepancy.

Removing the improperly specified Connectivity
layer of the original reference architecture eliminated
all of the empty-layer and multi-layer component dis-
crepancies identified in Table 2. This layer provided
security and communication protocols used by nearly
every other layer of the original reference architec-
ture. In fact, a number of the recovered components
from the eighteen analyzed technologies could be rea-
sonably classified to be in both the Connectivity layer
and another layer of the original DSSA due to the

pervasive need for security and communication ser-
vices. In our DSSA, such components were placed in
the appropriate subsystem and their interactions made
explicit.

Components that were originally placed only inside
the Connectivity layer are easily reclassified in the
new DSSA. For a great majority of the recovered
grid architectures, only one or two components were
shoe-horned into the Connectivity layer of the orig-
inal DSSA (e.g., recall Fig. 1). These components
contained a large number of Collective services and,
thus, were typically placed in the Collective subsys-
tem of the new DSSA (e.g. Pegasus’s Authenticate
andAuthenticate Engine in Fig. 3).
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6 Conclusions

Our study of eighteen widely used grid technologies
over the past five years suggested major deviations
of their as-implemented architectures from that of
the grid’s widely cited “anatomy” and “physiology”.
These deviations ranged from minor undocumented
components to significant deviations of the grid’s lay-
ered reference architecture. Furthermore, the grid’s
architecture, as documented, was frequently ambigu-
ous and under-specified. This suggested a need for
another look at the grid’s DSSA and possibly its sig-
nificant refinement. We have motivated, described,
and evaluated our refinement to the grid’s DSSA. We
have showed that our proposed DSSA captures the as-
implemented architectures of grid technologies much
more accurately (reducing their apparent structural
violations by 85 %), and more closely matches the
needs of the domain of grid computing (by describing
key interaction styles and deployment characteristics
missing from the grid’s original specification). Our
future work includes analyzing and refining the pub-
lished grid requirements in light our new grid DSSA
and applying our DSSA to additional grid platforms.

Our work represents a basis on which fundamental
grid architectures and requirements can now be further
defined and studied starting from a point that more
closely matches most of the common grid and cloud-
based systems in use today. In addition, the approach,
data collected, and study evaluation metrics can also
serve as an example for which future computing
paradigms and architectures can be assessed.

We hope that the data and identified discrepan-
cies from our study can also serve as a model for
improvement for many of the grid and cloud systems
studied and ultimately that the new grid DSSA can
better describe for developers and users of the eighteen
grid systems the interactions, uses, expected behav-
iors, structural elements, and evolution road for those
and other similar grid and cloud-based computing
platforms.
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