
Automatic Generation of Inter-Component Communication
Exploits for Android Applications

Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek
Department of Informatics

University of California, Irvine
Irvine, California, USA

{joshug4, hammadm, negargh, malek}@uci.edu

ABSTRACT
Although a wide variety of approaches identify vulnerabilities in
Android apps, none attempt to determine exploitability of those
vulnerabilities. Exploitability can aid in reducing false positives of
vulnerability analysis, and can help engineers triage bugs. Specif-
ically, one of the main attack vectors of Android apps is their
inter-component communication interface, where apps may re-
ceive messages called Intents. In this paper, we provide the first
approach for automatically generating exploits for Android apps,
called LetterBomb, relying on a combined path-sensitive symbolic
execution-based static analysis, and the use of software instrumen-
tation and test oracles. We run LetterBomb on 10,000 Android apps
from Google Play, where we identify 181 exploits from 835 vulner-
able apps. Compared to a state-of-the-art detection approach for
three ICC-based vulnerabilities, LetterBomb obtains 33%-60% more
vulnerabilities at a 6.66 to 7 times faster speed.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software testing and debugging;

KEYWORDS
Android, exploit, vulnerability, test generation, test oracle
ACM Reference Format:
Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. 2017.
Automatic Generation of Inter-Component Communication Exploits for
Android Applications. In Proceedings of ESEC/FSE’17, Paderborn, Germany,
September 04–08, 2017, 11 pages.
https://doi.org/10.1145/3106237.3106286

1 INTRODUCTION
Mobile devices are ubiquitous, with billions of smartphones and
tablets used worldwide [6]. Among these popular mobile devices,
Android has emerged as the dominant platform [1]. Fueling the
popularity of such devices is the abundance of applications (apps)
available on a variety of app markets (e.g., Google Play). This abun-
dance of apps arises, in large part, due to the Android platform’s
low barrier to entry for amateur and professional developers alike,
where a re-usable infrastructure enables relatively quick produc-
tion of apps. However, this low barrier to entry is associated with
an increased risk of apps with defects, particularly in the form of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106286

security vulnerabilities [19]. Consequently, developers and design-
ers of such apps need to utilize appropriate approaches, tools, and
frameworks that aid them in producing secure apps.

To identify security vulnerabilities in Android apps, a plethora of
approaches have been constructed [37]. Most of these approaches
rely upon static analysis of Android apps to identify such vulnera-
bilities [7, 11, 16, 19, 25, 29, 33, 34, 37]. Several approaches utilize
dynamic analysis for identifying vulnerabilities in Android apps
[13, 21, 27, 31, 43]. Other approaches use a combination of static and
dynamic analysis to identify vulnerabilities [22, 35, 38, 39, 41, 42, 44].
Although these approaches and techniques have provided useful
means for identifying vulnerabilities, the exploitability of those
vulnerabilities often must be determined manually by security ana-
lysts. Such amanual task is cumbersome, time-consuming, and error
prone. Furthermore, vulnerabilities that are identified by existing
techniques that are not actually exploitable do not pose a true secu-
rity problem. The time an analyst spends on such non-exploitable
vulnerabilities should be minimized.

Ideally, an approach is capable of both identifying vulnerabilities
within an Android app and determining if such vulnerabilities
are exploitable, in an automated fashion. Achieving the latter goal
reduces the false positives produced by a security analysis and
the time a human analyst must spend examining a vulnerability.
Furthermore, identifying vulnerabilities that can be automatically
exploited (1) aids software engineers in determining which bugs
they should prioritize first, (2) provides an input to help fix the
security bug, and (3) keeps engineers ahead of malicious actors that
may create zero-day exploits of vulnerabilities.

To enable automatic exploit generation (AEG) for Android apps,
two challenges must be overcome. First, specific Android constructs
must be taken into account, including the distributed event-based,
or message-based, framework that serves as an app’s attack surface.
In particular, inter-component communication (ICC) both within
and across Android apps relies primarily on the exchange of asyn-
chronous messages, called Intents in Android. Furthermore, the
Android framework provides a set of pre-defined components that
react differently to Intents they receive. Another challenge of apply-
ing AEG to Android is providing a means of automatically assessing
whether a vulnerability has been exploited.

To address these challenges, and apply AEG for Android, we
present an approach, called LetterBomb, that (1) models the An-
droid framework, especially the ICC interface of Android apps;
(2) provides test input generation, whose goal is to construct an
ICC input that actually exploits a vulnerability; and (3) includes
software test oracles that determine if a test input successfully
exploits a particular vulnerability type. Specifically, we focus on
three types of vulnerabilities—inter-process denial of service, cross
application scripting, and Fragment injection—where each vulnera-
bility corresponds to a single oracle type. Each oracle is realized as

661

https://doi.org/10.1145/3106237.3106286
https://doi.org/10.1145/3106237.3106286

ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek

a combination of instrumentation at either the app or framework
level, and the check of a property to determine if exploitation was
successful. As a result, even though each vulnerability requires an
oracle designed specifically for it, construction of each oracle only
needs to be performed once, either as an algorithm that automati-
cally instruments an app, or a one-time modification to the Android
framework. Thereafter, the oracle may be continually reused.

Given that test input generation is critical for AEG at the ICC
interface of Android apps and their constituent components, Letter-
Bomb relies upon a path-sensitive analysis of Android apps along
the message-based Android ICC interface, i.e., Intents. Determining
exploitability of a vulnerability at a particular statement is depen-
dent on assessing the different program paths that may reach a
statement. Certain paths may reach a statement without exploit-
ing the vulnerability residing at that statement—or there may be
more than one path in a program that may exploit a vulnerable
program statement. As a result, it is important for our analysis to
be path-sensitive to minimize the possibility of missing exploitable
vulnerabilities. At the same time, path-sensitive analyses face the
problem of path explosion, as the program grows, due to the po-
tentially exponential number of program paths to be analyzed. To
address this problem, our approach analyzes program paths begin-
ning from the points in the program that may be vulnerable, and
utilizes information about the Android framework to reduce the
information that needs to be considered for the analysis.

The main contributions of our work are as follows:
• We present LetterBomb, the first approach for automatically gen-
erating exploits of Android apps at their ICC interface.
• We perform an evaluation of LetterBomb on 10,000 Android apps
in terms of its ability to generate ICC exploits, reduce the false
positives of a conservative path-sensitive static analysis, and
the efficiency of the different parts of our approach. We have
identified 181 exploits from 835 apps, and have informed the au-
thors about the exploits and associated vulnerabilities. We further
compare LetterBomb to a state-of-the-art detection approach for
three ICC-based vulnerabilities, and find that LetterBomb obtains
33%-60% more vulnerabilities at a 6.66 to 7 times faster speed.
• We describe LetterBomb’s implementation and make it available
online [5].

2 BACKGROUND AND RUNNING EXAMPLE
To aid in understanding LetterBomb, we first cover the necessary
background regarding the Android platform and describe a running
example of an Android app we will reuse throughout the paper.
Finally, we cover the foundational aspects of AEG.

Android Background. The Android Development Framework
(ADF) supplies developers with a set of customizable components
and communication mechanisms that allow construction of mobile
apps. In particular, Android includes four pre-defined components:
Activities, Services, Broadcast Receivers, and Content Providers.
An Activity represents a GUI screen that an app displays to a user
and allows her to interact with the app. A Service runs operations in
the background of an app. A Content Provider represents persistent
data storage of an app. A Broadcast Receiver receives Intents that
are, as its name implies, broadcasted by other apps or the Android
framework itself (e.g., indicating that the battery is low or that the
device has finished booting). Activities, Services, and Broadcast
Receivers can exchange Intents.

Activities may consist of Fragments, where each Fragment may
represent a partial or whole screen viewable by a user. For example,

one Fragment of an email app may contain the list of messages to
be displayed, while another Fragment may contain the body of an
individual message.

As an event-based system [20, 30], Android components, i.e., Ac-
tivities and Services, may have multiple entry points corresponding
to their lifecycle. For example, an Activity has separate entry points
for initial creation and being sent to the background to pause the
Activity. Broadcast Receivers have a single entry point, but may be
registered dynamically.

From our studies of Android apps, there are mainly three types
of attributes of an Intent that an app uses to determine the manner
in which it will utilize the Intent and perform operations based on it:
the action of an Intent, its categories, and its extra data. The action
of an Intent is an attribute that indicates the general operation
to be performed in response to an Intent (e.g., display data to the
user or deliver data to some person or agent). Categories of an
Intent provide additional information as to the manner in which
the Intent’s action should be performed (e.g., whether the Intent
will allow launching of an application as referenced by a link in
a browser). Extra data, also called Bundles, are a collection of key-
value pairs in an Intent, allowing storage of additional attributes.

Running Example. By supplying actions, categories, or extra
data with malicious payloads, or excluding these attributes, an
attacker can exploit an ICC-based vulnerability in an Android app.
Figure 1 illustrates two activities AdsActivity, which shows ads to
a user, and FragmentActivity, which utilizes Fragments as part of
the UI of the Activity. Both of these Activities contain exploitable
vulnerabilities that are reachable from the app’s ICC interface.

AdsActivity shows a banner ad if it receives an Intent whose
action contains the string “BANNER” (line 5) or an interstitial ad,
i.e., an ad that fills the entire screen, if the Intent’s action contains
the string “APPWALL” (line 7). For the interstitial ad to display,
the Intent must have (1) an integer extra data containing the key
“expirytime” and value greater than 0, and (2) must not include the
default Intent category (line 8). To display the interstitial ad, the
AdsActivity relies upon a WebView, which is a class that displays
a web page from within an Activity. The contents of the web page
depend on a boolean extra data, supplied by the Activities incoming
Intent, with a key “cached” (lines 14-18). If the value of this extra
data is set to true, the web page is loaded from a cached URL (line
16); otherwise, the URL used as part of the displayed web page
depends on a string extra data, with key “url”, supplied by the
incoming Intent (line 18).

Two vulnerabilities exist within the AdsActivity. First, by send-
ing an Intent with no action to this Activity, a null pointer exception
will be thrown when the Activity checks the Intent for a “Banner”
action. Specifically, invoking the equals method on the action
string is an invocation of a null object (line 5), which results in the
app crashing as the thrown exception is not caught. This vulnerabil-
ity can be leveraged by a malicious app to perform an inter-process
denial-of-service (IDOS) attack on the AdsActivity by periodically
sending an Intent with no action.

The second vulnerability occurs when the incoming Intent of
the AdsActivity loads a web page supplied by an Intent. A mali-
cious app can send an Intent to the AdsActivity and attempt to
perform a spoofing attack by redirecting the user to a web page re-
questing sensitive personal information. Alternatively, the WebView
may be redirected to a page with malicious JavaScript code. This
vulnerability is similar to cross-site scripting vulnerabilities in web

662

Automatic Generation of Inter-Component Communication
Exploits for Android Applications ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany

1 public class AdsActivity extends Activity {
2 public void onCreate(Bundle savedInstanceState) {
3 Intent intent = getIntent ();
4 String action = intent.getAction ();
5 if (action.equals("BANNER"))
6 doBannerAd(intent);
7 else if ("APPWALL".equals(action)) {
8 if (intent.getIntExtra("expirytime" ,0) > 0 && !intent.

hasCategory("android.intent.category.DEFAULT"))
9 doAppWallAd(intent); }}
10 private void doAppWallAd(Intent intent) {
11 Bundle data = intent.getExtras ());
12 WebView webView = (WebView) findViewById(R.id.webView1);
13 String url = null;
14 boolean cached = data.getBooleanExtra("cached",true);
15 if (cached) {
16 url = getCachedUrl ();} }
17 else {
18 url = data.getStringExtra("url"); }
19 webView.loadUrl(url); }
20
21 public class FragmentActivity extends Activity {
22 protected void onCreate(Bundle savedInstanceState){
23 ...
24 String fragmentName = getIntent ().getStringExtra("frag_name

");
25 Fragment f = Fragment.instantiate(this , fragmentName , args)

;
26 FragmentTransaction transaction = getFragmentManager ().

beginTransaction ();
27 transaction.replace(R.id.fragment_container , f);
28 transaction.commit (); }}

Figure 1: An example app with ICC vulnerabilities

applications, and is referred to as cross-application scripting (XAS)
vulnerabilities for Android apps [27].

FragmentActivity, in addition to using Fragments as part of its
UI, contains a Fragment injection (FI) vulnerability [27], which oc-
curs when a Fragment loaded by an app is controllable by an Intent
received from outside of it. For FragmentActivity, an incoming
Intent with a string extra data containing the key “frag_name” can
be exploited by supplying as its value the name of a Fragment that
resides in the corresponding app. This Fragment is then instantiated
and loaded into the FragmentActivity (lines 25-28).

To better understand how such a vulnerability can be exploited,
consider an app with a Fragment called MainFragment, which con-
tains the app’s main screen. To reach this main screen, a user must
first be authenticated through a login screen by entering her user-
name and password. If the app is vulnerable to FI, a malicious
attacker can pass the login screen by exploiting the FI and loading
MainFragment directly from a vulnerable Activity.

Automatic Exploit Generation. The goal of AEG is to gen-
erate and identify an input that satisfies the following boolean
equation πbuд ∧ πexploit [9].

πbuд is an unsafe path predicate. Such a path predicate may be
one identified using symbolic execution and the conditions needed
to execute that path. For example, to move the AdsActivity to a
state in which it is vulnerable to an XAS, πbuд would be satisfied by
an incoming Intent containing an integer extra data with key-value
pair {“expirytime”, > 0}, no default category, and the boolean extra
data key-value pair {“cached”, false}.

πexploit is an exploit predicate that represents an attacker’s logic
and successful exploitation of a vulnerability. To exploit the XAS
vulnerability of AdsActivity, πexploit would be represented by
an Intent with a string extra data containing the key “url” and the
value equal to a malicious URL, and the WebView’s private URL
member string set to that malicious URL.

3 LETTERBOMB OVERVIEW
Figure 2 depicts a high-level overview of LetterBomb. Vulnerability
Identifier (VI) conservatively analyzes the inputted app to identify

statements where exploitable vulnerabilities may exist, and passes
those vulnerable statements to Attack Intent Generator (AIG) and
Exploit Oracle Instrumenter (EOI).

AIG performs a backwards static symbolic execution (SSE) start-
ing from the vulnerable statements identified by VI to determine
the payload of Intents that, when sent to the vulnerable component,
are likely to execute each vulnerable statement. By performing SSE
from the vulnerable statements, the SSE reduces the possibility of
path explosion faced by performing a symbolic execution. Based on
the type of vulnerability identified, AIG determines the appropriate
modification to the Intent needed to potentially exploit the vulner-
ability (e.g., supply a value to an extra data, or leave out an extra
data). Each generated Intent is (1) an attack on the app, whose goal
is to exploit a particular vulnerable statement, and (2) a security test
case. VI and AIG together aim to satisfy πbuд of the AEG equation
in Section 2 and the attacker’s logic of πexploit .

LetterBomb

Exploit	Oracle	
Instrumenter

Attack	Intent	
Generator

Vulnerability	
Identifier

Instrumented	
Application

App

Android	
Framework

Attack	Intents

Instrumented
Framework

Vulnerable	
Statements

Intent	
Modifications

Figure 2: Overview of LetterBomb
EOI takes three inputs: vulnerable statements from VI , the ap-

plication, and the Android framework. Based on the vulnerability
types LetterBomb intends to exploit (i.e., IDOS, XAS, and FI in this
paper), EOI instruments either the application or the Android frame-
work, to insert oracles in the form of probes that can determine
at runtime if an attack Intent successfully exploits a vulnerable
statement. Essentially, EOI aims to satisfy the successful exploit
portion of πexploit .

In the following sections, we discuss each of the three major
components of LetterBomb: VI , AIG, and EOI .

4 VULNERABILITY IDENTIFICATION
VI ’s main goal is to conservatively identify potentially vulnerable
statements. By performing vulnerability analysis conservatively,
the output of VI may be less precise, but such an analysis ensures
the vulnerabilities are well-covered during SSE and security testing.
In the remainder of this section, we will discuss the static analyses
we perform to identify statements vulnerable to the three types of
vulnerabilities that we focus on in this paper.

Inter-Process Denial-of-Service. To identify potential IDOS
attacks, VI checks for uses of an Intent’s payload that may cause an
unhandled null pointer exception. To that end, VI examines each use
of an Intent attribute (i.e., an Intent action, extra data, or category)
and performs a backwards data-flow analysis along the use-def
chain [14] of the corresponding attribute to determine if there is
a null check of the attribute [19]. A null check is a conditional
comparison of an object against null.

1 if (action != null) {
2 if (action.equals("BANNER"))
3 doBannerAd(intent);}

Figure 3: Modified example from lines 5-6 of Figure 1

663

ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek

To illustrate, consider Figure 3, which contains a modified code
snippet from lines 5-6 of Figure 1. Line 1 of Figure 3 contains a
null check of the Intent action. If VI ’s backwards data-flow analysis
along the use-def chain of an Intent attribute does not include a
null check, VI marks the use as vulnerable to an IDOS attack, and
adds that statement as a vulnerable statement to be outputted.

Cross-Application Scripting. VI identifies statements vul-
nerable to XAS attacks by first identifying invocations of
WebView.loadUrl(...) in an application. Starting from such a
statement, VI performs a backwards data-flow analysis along
the use-def chain of arguments passed to the invocation
WebView.loadUrl(...) at that statement. If any of those argu-
ments are uses of a definition statement whose right-hand side
involves the extraction of an Intent attribute, VI considers the state-
ment vulnerable to an XAS vulnerability.

As an example, consider the statement at line 19 of Figure 1
that is vulnerable to XAS. VI follows the url string argument at
that invocation along the argument’s use-def chain. At line 16, the
definition of url does not involve data extracted from an Intent—
recall that the URL is extracted from a cache. A summary of the
getCachedUrl() may be used to make this determination, or this
information may be determined during runtime when generated
Intent attacks are executed. On the other hand, at line 18, url is
assigned its value from a string extra-data attribute. As a result, VI
marks line 19 as vulnerable to XAS.

Fragment Injection. To determine if a statement is
vulnerable to FI, VI checks (1) if the statement invokes
Fragment.instantiate(...) and (2) if the second positional
argument of that method, i.e., the name of the Fragment to load,
is controllable using an Intent attribute by following the use-def
chain of that argument.

For example, consider the invocation of
Fragment.instantiate(...) at line 25 of Figure 1.
fragmentName is the second positional argument of that in-
vocation, indicating the name of the Fragment to be loaded from
within the app under analysis. By following the use-def chain
of this object backwards, we find its sole definition at line 24
of Figure 1. At that statement, fragmentName is assigned the
value of the extra data corresponding to the key “frag_name” of
FragmentActivity’s incoming Intent. As a result, an Intent can
control the Fragment loaded at line 25, making that statement
vulnerable to a FI.

5 ATTACK INTENT GENERATION
AIG performs two key functionalities to exploit an ICC-based vul-
nerability: (1) computes Intents that can execute a vulnerable state-
ment along all possible Intent-controlled paths, and (2) modifies
Intent attributes to supply vulnerability-specific logic of an attack.
5.1 Reaching Intent Generation
To perform (1), AIG relies on an algorithm we refer to as Reaching
Intents, which is a flow-sensitive, context-sensitive, object-sensitive,
and path-sensitive backwards SSE and a backwards data-flow analy-
sis over the app’s use-def chains [14], beginning at each vulnerable
statement supplied to it by VI . By starting the SSE from vulnerable
statements, the SSE prunes the space from which paths must be
computed, as opposed to a forward symbolic execution starting
from the ICC-based entry points of the app to all statements reach-
able from those entry points. This pruning significantly reduces
AIG’s computation time. Each backwards SSE can be computed in-
dependently per vulnerable statement—allowing the backwards SSE

Algorithm 1: intentControlAnalysis
Input: set of methodsM in reverse topological order from the app; targetStmts, a set of

vulnerable statements
Output: a map Σ : M → targetExprs, which describe the Intents and path conditions of

methodsM
1 Σ← ∅;
2 foreach methodm ∈ M do
3 useDefsm ← constructUseDefChains(m);
4 foreach statement st ∈ m .statements do
5 if st ∈ tarдetStmts then
6 reachPaths← constructBackReachPaths(m.cfg, st);
7 intraPathExprs← ∅;
8 foreach path p ∈ reachPaths do
9 foreach sp ∈ p do

10 if sp is an invocation of the formmα (A) and A is a set of
arguments passed tomα then

11 if argument a is an Intent and a ∈ A then
12 if Σ(mα) has an Intent referencing the parameter

matching argument a then
13 intraPathExprs←

useSummary(Σ(mα), A);
14 Σ← ∆(Σ, st , intraPathExprs, p);

15 else
16 intraPathExprs←

generateExprsForStmt(sp , p, useDefsm) ∪
intraPathExprs;

17 Σ← ∆(Σ, st, intraPathExprs, p);

to be parallelized, further improving scalability of AIG’s analyses
of Intents needed to execute a vulnerable statement.

To obtain a call graph suitable for analysis of Android apps, the
call graph must account for the multiple entry points of an Android
app and its lifecycle. To achieve this, Reaching Intents incorporates
incremental callback analysis to construct a call graph as described
in previous work [7], where the call graph is continuously updated
with identified callback registrations until a fixed point is reached.

The main algorithm driving Reaching Intents’s analysis, intent-
ControlAnalysis, is depicted in Algorithm 1. Similar to previous anal-
yses [23, 32], intentControlAnalysis is a summary-based analysis
that processes methods in the app’s call graph in reverse topological
order, and takes as input targetStmts, i.e., the vulnerable statements
identified by VI . By analyzing methods in that order, intentControl-
Analysis ensures that a callee method’s summary is constructed
and available before a caller method is analyzed, preventing the
need to analyze a method more than once and improving intent-
ControlAnalysis’s efficiency. intentControlAnalysis returns a map
Σ : M → targetExprs summarizing the analysis results for each
methodm ∈ M . Essentially, this map contains the expressions de-
scribing the Intent, including its attributes, to be generated that
may reach vulnerable statements in the app. Each e ∈ targetExprs
is a pair (sτ , exprsp). exprsp is a sequence of expressions describing
Intents and path conditions in a program path p; and sτ is a vulner-
able statement, where backward symbolic execution initiates from,
which is further elaborated in the next section.

Algorithm 1 analyzes each methodm by first constructingm’s
use-def chains (line 3 of Algorithm 1). For each vulnerable state-
ment st of a method m, line 6 of Algorithm 1 constructs all the
relevant program paths from the entry point of the program to
the vulnerable statements by invoking constructBackReachPaths. To
avoid analyzing paths that may not actually reach these vulnerable
statements, and thus improving analysis efficiency, constructBack-
ReachPaths builds these relevant program paths through a backward
traversal algorithm over a method’s control-flow graph.

intentControlAnalysis determines whether to utilize Σ for an
invoked method in sp of path p, or construct entirely new Intent

664

Automatic Generation of Inter-Component Communication
Exploits for Android Applications ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany

Algorithm 2: generateExprsForStmt
Input: A statement sp of methodm, path p inm containing sp , use-def chain useDefsm of

methodm
Output: expressions newExprs describing Intent and path-condition information at

statement sp
1 newExprs← ∅;
2 if sp extracts extra data from an Intent i of the form re = i .get[Ψ]Extra(rk) then
3 newExprs← дenExtraDataExprs(sp , p, useDefsm) ∪ newExprs;

4 else if sp extracts an action from an Intent i of the form ra = i .getAction() then
5 newExprs← genGetActionExprs(sp , p, useDefsm) ∪ newExprs;

6 else if sp is of the form if (i .hasCategory(rc)), where i is an Intent then
7 newExprs← genCategoryExprs(sp , p, useDefsm) ∪ newExprs;

8 else if sp is a conditional statement of the form if (r1 .equals(r2)) then
9 if r1 is a String obtained from an Intent’s extra data then

10 newExprs← genStringAttrExprs(sp , p, useDefsm) ∪ newExprs;

11 else if r1 is an arbitrary object obtained from an Intent’s extra data then
12 newExprs← genObjEqualityExprs(sp , p, useDefsm) ∪ newExprs;

13 else if sp is a conditional statement of the form if (l op r) then
14 newExprs← genConditionalExprs(sp , p) ∪ newExprs;

expressions for sp . For invoked methods, lines 10-14 of Algorithm
1 utilize method summaries to determine context-sensitive Intent
information at a call site by enumerating path expressions from
Σ and updating Σ based on the current methodm under analysis.
For other types of statements, lines 16-17 of Algorithm 1 utilize
generateExprsForStmt to construct new Intent expressions. In that
block of code, intentControlAnalysis stores Intent information (i.e.,
expressions describing the Intent’s attributes) in Σ. At this point,
the computed path conditions and expressions describing Intents
may be sent to a solver to check for feasibility, and to generate
Intents that can execute specific program paths.

5.1.1 Generating Intent Expressions. The production of expres-
sions describing message-controlling Intents occurs during the first
phase, on lines 8-17 of Algorithm 1. For each statement sp in a path
p that reaches vulnerable statement st , Algorithm 1 at line 16 gener-
ates a set of expressions describing the Intent or the path conditions
at sp by invoking generateExprsForStmt, shown in Algorithm 2.

generateExprsForStmt generates each expression in a language
suitable for supplying to an SMT solver, i.e., the SMT-LIB language
[12], allowing our analysis to use the SMT solver to determine fea-
sibility of paths, and also the validity of the expressions describing
Intents, their attributes (i.e., actions, categories, and extra data),
and their relations to programming language-level constructs (e.g.,
object references, definition sites, etc.). In a post-processing phase,
AIG utilizes these generated SMT expressions to construct Intents
that can be executed by an appropriate test bed. To support a vari-
ety of Intent usages, we model primitive comparison operators for
numerics and booleans, i.e., ==, !=, <=, >=, <, and >.

generateExprsForStmt takes as input a statement sp of methodm,
path p inm containing sp , and use-def chain useDefsm of methodm.
As output, generateExprsForStmt constructs expressions describing
an Intent and path conditions that the Intent must satisfy to reach
a vulnerable statement. By considering the path p of sp , generateEx-
prsForStmt ensures that expressions generated for sp are relevant
to p, thus maintaining path sensitivity. Each conditional block in
Algorithm 2 handles a different type of program statement and
generates expressions based on that statement type.

Extra Data. To handle extra data, genExtraDataExprs (at line
3 of Algorithm 2) produces symbolic variables for the following
references: rk , key of the extra datum extracted from the Intent i;
re , containing the value of the extra datum; and i for the reference
of the Intent housing the extra datum. genExtraDataExprs further

records the type of the extra datum at the programming language-
level when declaring a new symbol by taking the API method’s
type Ψ into account. For example, in the case of the API method
getIntExtra, Ψ is an integer. To represent the new generated in-
formation, genExtraDataExprs creates expressions of the following
form, with declarations removed for brevity:

e1) (assert (= (containsKey re rk) true))
e2) (assert (= (fromIntent re) i))

e1 indicates that extra datum re contains key rk ; e2 asserts that re
is from Intent i . We further define a generic Object datatype for
the solver that can be either null or not null. In the expressions
above, i is declared as an Object, rk is a built-in String type, and
re varies in type depending on Ψ. As an example, consider line 8 of
Figure 1. On that line, the getIntExtra invocation results in the
generation of the following expressions:

e3) (assert (= (containsKey ret “expirytime”) true))
e4) (assert (= (fromIntent ret) rintent))

Reaching Intents and its underlying algorithms ensure that, when-
ever a symbol or expression is generated, the following criteria are
met: (1) any definitions of references are along the current path
under analysis and (2) the closest definition for the reference at the
statement under analysis is used. These two criteria ensure that data
along other paths is not generated and that values of dead variables
are not used, thus maintaining path sensitivity. Additionally, since
we compute our analysis in a backwards fashion along a path, we
create a different symbol every time a variable is redefined, as done
in previous work [8], in order to simulate static single assignment.

Reaching Intents also tracks extra data not directly extracted
from Intents. For example, consider the extra datum “cached” from
an Intent extracted at line 14 of Figure 1. This datum is obtained
from a Bundle object, which represents the extra data within an
Intent, but also has a different API than if extra data is extracted
directly from an Intent. Reaching Intents tracks this information as
it extracts extra data from Intents.

Actions. For an action of an Intent, genGetActionExprs (at line
5 of Algorithm 2) produces symbolic variables for the following
references: ra , the reference storing the action of Intent i; and
the reference to i . Using those variables, the function creates the
following expressions:

a1) (assert (= (getAction i) ra))
a2) (assert (= (fromIntent ra) i))

The first expression indicates that i has the action ra . By defining
the function getAction in the solver, it can verify that along the
path, Intent i should only have a single action. As in the case for
extra data, i is declared as an Object.

Categories. genCategoryExprs (at line 7 of Algorithm 2) handles
categories by analyzing a conditional statement that checks if an
Intent has a category. In particular, the function creates the follow-
ing symbols: rh representing the boolean reference indicating if
the Intent i has a category rc ; the Intent i; and rc , which is a string
reference representing the name of the category. To determine, if
along the path under analysis, i has category rc , genCategoryExprs
must determine if the path containing the conditional check on
hasCategory and its successor statement is along a true branch or
false branch. A true branch indicates that rc is in i; a false branch
implies the opposite.

Although a set would be an ideal representation of categories
in an SMT solver, it is not always the case that sets are built-in
to the solver. Furthermore, specifying them properly is a research
challenge in its own right [18]. Consequently, we simply represent

665

ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek

a set as an array and use expressions involving quantifiers to check
existence or absence of a category. Therefore, for existence of a
category, genCategoryExprs generates the following expression:
(assert (exists((idx Int))(= (select catsrh idx) rc)))

The above expression simply asserts existence of an element at
index idx in the array catsrh that contains the value rc , using the
existential quantifier. For absence, genCategoryExprs generates the
following expression:
(assert (forall((idx Int))(not (= (select catsrh idx) rc))))

The expression asserts that for all elements in the array catsrh there
is no element with the value rc . To relate the categories catsrh to
an Intent i , genCategoryExprs produces an expression using the
fromIntent function.

For example, consider a partial path from lines 8-9 in Figure 1. At
line 8, genCategoryExprs generates the following expression, where
we elide the fromIntent expression due to space limitations:

(assert (forall ((idx Int)) (not (= (select catsrh idx)

“android.intent.category.DEFAULT”))))
String and Object Comparisons. Equality comparisons

among strings, and to a lesser extent objects in general, are critical
for determining the contents of Intents that control execution of dif-
ferent program paths. Although other forms of string manipulation
may potentially affect execution, they are extremely rare, as found
both in this study and previous work [8, 11, 23, 36]. Consequently,
our analysis focuses on representing and handling string equality.

Specifically for Intents, determining string extra data and val-
ues of actions for an Intent are dependent on extracting equality
comparisons. As an example, for any path that reaches line 9 of
Figure 1, the equals comparison of strings at line 7 in that figure
must evaluate to true. Furthermore, along that path, the action of
the Intent must be “APPWALL”.

To extract Intent information from string comparisons,
genStringAttrExprs (invoked on line 10 of Algorithm 2) analyzes
string equality statements. For statements of the form shown
on line 8, genStringAttrExprs creates symbols for references r1
and r2 declared as built-in strings and generates an expression
of the form asrteq = (assert (= r1 r2)) if the comparison is
true along the path under analysis, and generates the expression
¬asrteq = (assert (not (= r1 r2))) otherwise. As in the case of
non-conditional extra data extraction, expressions of the form e1
and e2 are generated as well, describing the key of the string extra
datum and the Intent it belongs to.

To obtain potential values for actions of an Intent along a path,
genStringAttrExprs need only generate the assertion expressions of
the form asrteq or ¬asrteq . These expressions combined with the
expressions of the form a1 and a2 extracted by genGetActionExprs
describe potential string values for actions of a particular Intent.

For example, in line 7 in Figure 1 with a path ending at line 9 of
Figure 1, genStringAttrExprs generates the following expressions:

a3) (assert (= ra “APPWALL”))
a4) (assert (not (= ra “BANNER”)))
The other relevant information along the path for the action,

generated by genGetActionExprs, are as follows:
a5) (assert (= (getAction i3) ra))
a6) (assert (= (fromIntent ra) i3))

In expression a5 and a6, the Intent symbol’s subscript represents
the line number where the Intent is created. In that case, the Intent
that starts AdsActivity is obtained at line 3 of Figure 1.

When comparing arbitrary objects, genObjEqualityExprs (in-
voked on line 12 of Algorithm 2) operates in a manner highly

similar to that of genStringAttrExprs. genObjEqualityExprs still cre-
ates expressions of the form asrteq or ¬asrteq . These objects are
declared as our custom Object type and may also be assigned to
an Intent using the fromIntent function.

A special case occurs when a string rso is first compared with
the null constant along a path and is later compared with a specific
string. This case occurs in Figure 3, where rso refers to the Intent’s
action. To avoid type conflicts in such a case, we generate a symbol
for a reference rso as an Object and another symbol for rso as a
string. We then create a custom function objEquals that allows
comparison of strings with objects for the SMT solver.

Conditional Comparison Operators. Lines 13-14 of Algo-
rithm 2 handle conditional expressions involving comparison opera-
tors. This part of Algorithm 2 involves straightforward substitutions
of operators and variables, which we exclude in this paper due to
space limitations. Additionally, we model the null constant as its
own special type in SMT, since null values are used often and are
treated as a special case in Java code.

5.1.2 Constructing Context-Sensitive Results. Lines 10-14 of Al-
gorithm 1 enumerates paths inter-procedurally by identifying call
sites of summarized methods stored in Σ. Specifically, intentCon-
trolAnalysis checks three criteria to determine where to enumerate
paths for a statement sp in path p under analysis: (1) sp is a call
site to a summarized methodm1 in Σ, (2) an argument a passed
tom1 is an Intent, and (3) Σ(m1) contains expressions indicating
that information is generated from a parameter ofm1 that matches
a. For example, line 9 of Figure 1 is a call site where the method
doAppWallAd is invoked and is also summarized in Σ.

To clarify, consider the following intra-method
path poc = (2, 3, 4, 5, 7, 8, 9) of onCreate in Figure
1; and the two intra-method paths of doAppWallAd
from that figure: pd1 = (10, 11, 12, 13, 14, 15, 16, 19) and
pd2 = (10, 11, 12, 13, 14, 15, 17, 18, 19). In this example, intent-
ControlAnalysis has already summarized method doAppWall and
is now analyzing method onCreate, since intentControlAnalysis
analyzes methods in reverse topological order. In these three paths,
the numbers in the path represent the line numbers in the figure.
The Intent ioc for path poc has action “APPWALL”, an integer
extra data with key-value pair (“expirytime”, > 0), and no default
category. The Intent id1 for pd1 has extra data (cached, true);
Intent id2 for pd2 has extra data (cached, false).

Once Algorithm 1 reaches lines 16-17, intentControlAnalysis com-
bines these three paths into two context-sensitive paths. Specifically,
poc ⌢ pd1 forms a final context-sensitive path with a new Intent
iocd1 that is simply a combination of Intents ioc and id1 . Similarly,
poc ⌢ pd2 forms a second final context-sensitive path with a new
Intent iocd2 that is the combination of ioc and id2 . intentControl-
Analysis stores info for both context-sensitive paths and their new
Intents in Σ. iocd1 is ioc with extra data (cached, true). iocd2 is ioc
with extra data (cached, false). Note that if the combination of
two Intents conflict, the solver, as part of the symbolic execution,
would detect the conflict and determine that the path is infeasible.
For example, consider an Intent i1 has action a1, Intent i2 has action
a2, and a1 , a2. Combining i1 with i2 is a contradiction, which the
solver would detect.
5.2 Vulnerability-Specific Intent Modification
Once AIG computes the attributes of an Intent needed to execute
a path leading to a vulnerable statement, an attack specific to a

666

Automatic Generation of Inter-Component Communication
Exploits for Android Applications ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany

vulnerability must be crafted. To that end, AIG accepts two modifi-
cations to an Intent computed using Reaching Intents: (1) removal
of an attribute of an Intent and (2) modification of a value of an
attribute. In the remainder of this section, we describe how these
Intent modifications are applied for the three vulnerability types
we focus on in this paper. Note that once this vulnerability-specific
intent modification is designed and constructed, it can be reused
for every app and vulnerability instance.

For an IDOS attack, the Intent modification is to exclude the
attribute that would cause a crash to occur, which in our case is a
null pointer exception. For the example of the IDOS vulnerability
occurring at line 5 of Figure 1, the specific modification is to exclude
the attribute with no null check, which is the Intent action in this
case, and is determined automatically by VI .

To generate an exploit for XAS vulnerabilities, our analysis au-
tomatically identifies the key of the extra data to target, by examin-
ing the string passed to WebView.loadUrl(...), and supplies the
value of the extra data corresponding to a URL within our control.
For the example at line 19 of Figure 1, VI computes the extra data
with key “url” as vulnerable, and specifies a URL under our control
as the malicious value.

For FI, the Intent extra data’s key that controls the Fragment
to be injected is identified by the second positional argument of
Fragment.instantiate(...). At the same time, we determine
potential Fragment values to inject by identifying any class that
inherits from the android.app.Fragment class. In Figure 1, the
Intent is altered so that the extra data with key “frag_name” includes
the value “MainFragment”.

6 EXPLOIT ORACLE INSTRUMENTATION
To detect if a generated Intent successfully exploits a vulnerability,
EOI produces an oracle that is instrumented into the app or the
Android framework. For each of the three aforementioned vulnera-
bility types, we describe the manner in which we specify, generate,
or instrument the oracle. Although each vulnerability type requires
a customized oracle, we only need to specify or construct the instru-
mentation, or instrumentation algorithm, once. After that one-time
specification or construction, we can continually reuse the resulting
oracle or instrumentation to detect successful exploitation.

To instrument apps vulnerable to an IDOS attack, EOI adds, for
each vulnerable statement, an instrumented statement that logs
whether the vulnerable statement has been executed. Additionally,
EOI post-processes the logged information to identify exceptions
indicating crashes of the app (e.g., an exception printout with a
stack trace) after a vulnerable statement is executed.

XAS instrumentation requires a special algorithm that instru-
ments each statement vulnerable to XAS. To identify if injection
of the malicious URL is successful, instrumentation must deter-
mine the URL loaded once the WebView’s page has finished load-
ing. To that end, EOI instruments a vulnerable WebView object by
providing it a WebViewClient designed to log the current URL of
a WebView once its page has finished loading. A WebViewClient
allows overriding of callbacks of WebViews in order to perform
custom functionalities on a variety of a WebView’s events. An exam-
ple of how such instrumentation can be achieved is shown below,
where webView is an object of class WebView:
1 webView.setWebViewClient(new WebViewClient () {
2 public void onPageFinished(WebView view , String url) {
3 Log.i("Instrument","loaded url:" + url);
4 super.onPageFinished(view , url);}});

Similar to instrumentation for IDOS, EOI post-processes the log to
determine if an injected URL has been successfully logged. Note
that the injected URL or instrumented statement will not execute if
(1) the page does not finish loading or (2) the injected URL fails to
reach the WebView.loadUrl(...) method.

FI instrumentation requires modifications to the Android plat-
form to ensure that the injected fragment is successfully instan-
tiated. To that end, we instrumented (1) ActivityManager—an
Android platform-level class that administers ICC transactions—
to log the information of each ICC transaction (i.e., the sender,
receiver, and the Intent’s payload). We also instrumented (2)
PreferenceActivity, which is susceptible to FI, to log the
name of the successfully instantiated Fragment. To check if
PreferenceActivity is running after a Fragment is instantiated,
PreferenceActivity’s lifecycle is also instrumented to report its
mode of operation (e.g., running or stopped). EOI post-processes
the log to check for three conditions that together indicate a suc-
cessful FI: (1) the target Activity has received the FI Intent, (2) the
injected Fragment instantiated successfully, and (3) the Activity is
running without throwing any exception.

7 EVALUATION
To assess LetterBomb, we study the following research questions:
RQ1: What is LetterBomb’s accuracy in terms of its ability to pro-

duce information about Intents, the manner in which they
control execution of different program paths, and the associ-
ated path conditions?

RQ2: To what extent can LetterBomb identify exploits for the three
types of vulnerabilities described in Section 2?

RQ3: To what extent can LetterBomb’s Intent tests (i.e., attack
Intents, instrumentation, and oracles) reduce false positives
of statically identified vulnerabilities?

RQ4: What is LetterBomb’s efficiency in terms of execution time?
RQ5: How does LetterBomb’s AEG capabilities compare with a

state-of-the-art tool for detecting the three types of vulnera-
bilities that LetterBomb currently targets?

To answer these research questions, we implemented LetterBomb
in Java. For static analysis, we leveraged the Soot framework [40].
To solve path expressions and processing of SMT-LIB expressions,
we used the Z3 theorem prover [17]. To launch Intents in a realis-
tic attack scenario, we leveraged drozer [3], a security and attack
framework for Android. To instrument an app, we utilized Soot’s
instrumentation capability to build customized instrumentation
algorithms for IDOS and XAS vulnerabilities. For FI, we modified
the Android framework to include probes for monitoring successful
injection of Fragment names sent along with Intents. We make the
LetterBomb implementation and artifacts available online [5].
7.1 RQ1: Reaching Intent Accuracy
Of particular importance to LetterBomb’s ability to successfully pro-
duce exploits is the accuracy of Intents generated by our Reaching
Intents analysis, i.e., the question asked in RQ1. To answer RQ1,
we selected a set of apps listed in Table 1 from Google Play [4]. For
each app, we show the package name that uniquely identifies the
app; a brief description of the app and its functionalities; the app’s
size in terms of its source lines of code (SLOC); and the number of
program paths containing Intent usage, or program paths executed
based on Intents (IPaths).

The set of apps shown in Table 1 meet several criteria that signif-
icantly aid in answering RQ1. First, each app belongs to a different
application domain (e.g., security, file management, regional train

667

ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek

Table 1: Apps used for reaching Intent accuracy experiments
App Package Name App Description SLOC IPaths

com.samsung.srpol List a device’s apps by categories
of permissions

4,649 47

com.naholyr.android.horairessncf Search and track regional trains in
France

4,054 90

cri.sanity Phone call, SMS, audio recording,
and bluetooth management

9,604 458

com.ghostsq.commander Multi-protocol local and remote
file manager

24,883 973

org.thialfihar.android.apg Android port of OpenPGP for data
encryption and decryption

461,338 2,650

tracking, etc.). They vary in their sizes in terms of SLOC—from
4KSLOC to over 460KSLOC. Most importantly, these apps exhibit
sophisticated Intent usage by performing different operations along
different program paths based on the Intents they receive, and the
contents of those Intents. They include apps with over 2,600 pro-
gram paths that involve Intent usage or Intent control.

For each app, we manually checked every program path—over
4,200 program paths—to determine if the expressions generated
correctly describe the Intents and path conditions, particularly
Intent-controlling path conditions. We checked the correctness of
Intent information generated along a program path in the following
conservative manner: If our analysis generated any extra informa-
tion not valid for the path, we considered all of its information
incorrect. For example, if any extra datum was missing along a pro-
gram path, we considered the entire path incorrect. Consequently,
we deem any partially correct expressions describing Intents or
path conditions as completely incorrect. Furthermore, if extra infor-
mation about an Intent was generated by Reaching Intents, we also
consider all the Intent information generated for a program path
as incorrect. For instance, a spurious extra datum that is described
as belonging to an Intent is considered extra information and, for
evaluation purposes, renders all information along the path as in-
correct. To that end, we use the following correctness metric to
assess the accuracy of Reaching Intents per app:

Correctness Rate =
Pcor
Ptot

× 100

Pcor is the number of correct Intent control-based paths; Ptot is
the total of number of Intent control-based paths.

The accuracy results that answer RQ1 are shown in Table 2. For
each app, the table lists the number of paths with correct Intent
information (Pcor), the number of paths with incorrect Intent infor-
mation (Pinc), the total number of Intent-controlling paths (Ptot),
and the correctness rate (% Correct).

Reaching Intents’s correctness rate is very high with no app
having a rate lower than 96%. Overall, this indicates that for the
overwhelming majority of cases, Reaching Intents generates correct
Intent information.

Table 2: Accuracy of Reaching Intents’s analysis
App Package Name Pcor Pinc Ptot % Correct

com.samsung.srpol 47 0 47 100.00%
com.naholyr.android.horairessncf 90 0 90 100.00%
cri.sanity 454 4 458 99.13%
com.ghostsq.commander 906 37 943 96.08%
org.thialfihar.android.apg 2,565 85 2,650 97.79%

7.2 RQ2: Exploitability
To assess RQ2, we applied LetterBomb to a random set of 10,000
apps from Google Play. Table 3 depicts the results of that study:
including information about the three different Vulnerability Types
of this paper—IDOS, XAS, and FI; the number of Apps for which
LetterBomb statically detected a vulnerability; the number of apps
for which LetterBomb successfully generated an exploit (Exploited

Apps); the number of Vulnerabilities detected by LetterBomb’s VI ;
the number of Exploits detected for each vulnerability type; and
the number of Unique Exploits, where an exploit is unique if it
either reaches a unique vulnerable statement or, in the case of FI,
successfully injects a unique Fragment.
Table 3: Detected vulnerabilities and generated exploits

Vulnerability
Type

Apps Exploited
Apps

Vulnerabilities Exploits Unique
Exploits

IDOS 750 54 1,866 104 71
XAS 33 25 33 25 25
FI 52 3 193 52 52

LetterBomb successfully exploited 54 apps containing IDOS vul-
nerabilities, 25 apps containing XAS vulnerabilities, and 3 apps
containing FI vulnerabilities. LetterBomb obtained 71 unique ex-
ploits and 104 exploits in total for IDOS, 25 unique and total exploits
for XAS, and 52 unique and total exploits for FI. Note that a vul-
nerable statement may be exploited from more than one program
path, resulting in non-unique exploits with respect to a vulnera-
ble statement. Furthermore, we have informed the app authors of
these exploits. These results indicate that LetterBomb is capable of
producing a sizeable number of exploits.
7.3 RQ3: Spurious Vulnerability Reduction
Although a static analysis may be effective for identifying vulnera-
bilities, exploitability of a vulnerability can aid in assessing whether
a statically determined vulnerability is spurious, since it is not ex-
ploitable. By producing attack Intents for all possible paths to a
vulnerable statement, we can determine if a vulnerable statement
is spurious. To assess the spuriousness of the VI ’s vulnerability
detection, we compute the false discovery rate (FDR) as follows:

FDR =
nev

nev + uev
× 100

where nev is the number of non-exploitable vulnerabilities and
uev is the number of exploits that are unique with respect to a
vulnerable statement. nev counts the number of false positives
of a static vulnerability analysis; uev counts the number of true
positives in such an analysis. Given that no security analysis can
say with absolute certainty that they have not missed a potential
vulnerability (e.g., due to an indeterminable number of special
cases), FDR is a much more sensible metric that takes false positives
and negatives into account, compared to more traditional ones such
as precision or the false positive rate, which is infeasible due to the
need to account for such misses or false negatives. Furthermore,
FDR allows us to answer RQ3 by indicating the extent to which
the static vulnerabilities are false positives or spurious.

Table 4: Spurious vulnerability reduction results
Vulnerability
Type

Non-Expl.
Vuln.

Uniq. Expl. Vuln. False Discovery Rate (%)

IDOS 1,762 71 96.13
XAS 8 25 24.24
FI 141 52 73.06

Table 4 shows the results of our study for RQ3: including the
vulnerability type, non-exploitable vulnerabilities (Non-Expl. Vuln.),
unique exploitable vulnerabilities (Uniq. Expl. Vuln.), and the false
discovery rate results as a percentage. 100% means all the detected
vulnerabilities could not be exploited; 0% means no spurious vulner-
ability reduction was achieved. Our results indicate that LetterBomb
produces very high reductions for IDOS (96%) and FI (73%) vulner-
abilities, and significant reductions for XAS vulnerabilities (24%).

668

Automatic Generation of Inter-Component Communication
Exploits for Android Applications ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany

Note that our manual analysis of over 4,200 program paths in-
volving Intents from RQ1 gives us high confidence that nearly no
potential attack Intents were missed. Recall that more than 96%
of those program paths had correctly produced Intents, and that
any incorrect Intent information makes the entire program path
incorrect for that experiment.
7.4 RQ4: Runtime Efficiency
To answer RQ4, we ran VI and AIG, i.e., the static analysis com-
ponents of LetterBomb, on 1,000 apps randomly selected from our
original set of 10,000 apps. For this experiment, we used a machine
with two AMD Opteron 6376 2.3GHz 16MB Cache Sixteen-Core
Processors and 256GB RAM.

Table 5 presents the average, minimum, and maximum execution
time, in seconds, of the static analysis portion of LetterBomb for
each vulnerability type. On average, static analysis of LetterBomb
took between 99 and 182 seconds. The minimum execution time
for LetterBomb’s static analysis took between 1 and 2 seconds; the
maximum execution time was 39 minutes to 3.5 hours, depending
on the vulnerability type.

Table 5: Execution-time results for VI and AIG
Execution Time (s)

Vulnerability Type Average Min Max

IDOS 181.12 1.90 9610.90
XAS 176.17 1.83 12449.35
FI 99.18 1.12 2343.02

The overwhelming majority of apps take about 3 minutes to
analyze statically, despite our use of symbolic execution to make
our analysis path sensitive. LetterBomb analyzed multiple apps at
once, dedicating 4 cores to potentially parallelize analysis of each
app. More cores would allow further parallelization and reduce
runtime. Furthermore, 3.5 hours in the worst case is a reasonable
analysis time for generating highly precise attack Intents.

For the dynamic-analysis portion of LetterBomb, we executed
the generated Intents on the instrumented apps or platform using
the AndY [2] Android device emulator on a MacBook Pro with a
2.8 GHz Intel Core i7 and 16GB RAM. For each attack Intent sent
to an app, LetterBomb waited 3 seconds before stopping the app
under attack, in order to reset its state. LetterBomb would then wait
another 2 seconds before sending the next attack Intent.

Table 6 depicts the execution time results for the dynamic portion
of LetterBomb. For each vulnerability type (Vuln. Type), the table
shows the number of apps analyzed, the number of attack Intents
sent to all apps, the average execution time per app in minutes, and
the total execution time for all apps in minutes.

Table 6: Efficiency results for LetterBomb’s dynamic analysis
Execution Time (m)

Vuln. Type Apps Attack Intents Average Total

IDOS 750 3,684 1.25 600.00
XAS 33 50 0.18 6.03
FI 52 193 0.50 25.90

As our results indicate, LetterBomb’s dynamic analysis of An-
droid apps to assess vulnerabilities is fast, allowing us to analyze
hundreds of apps marked as vulnerable, according to LetterBomb’s
static analysis, in a matter of hours. On average, analysis time per
app is between 11 seconds and 1.25 minutes.

On average, LetterBomb’s combined static and dynamic analysis
time is between 3.12 to 4.30 minutes, for a single app and vulner-
ability type. For an analysis that combines path-sensitive static

symbolic execution with a dynamic analysis, this execution time is
reasonably fast, especially for generating an exploit.
7.5 RQ5: Vulnerability Detection Comparison
Although no approach automatically generates exploits for Android
apps, one approach, IntentDroid [27], focuses on vulnerabilities
from the Intent interface and analyzes the three types of vulner-
abilities that LetterBomb targets. Unfortunately, this approach’s
implementation is proprietary, owned by IBM, and costs between
$204 and $417 USD per app scanned, which is a prohibitive cost
for conducting a scientific study involving large numbers of apps.
IBM does offer a 30-day trial of this scanner, which is called IBM
Application Security on the Cloud (ASC), that allows a maximum
of 10 apps to be scanned. To address these usage limitations of IBM
ASC, a set of graduate students created trial accounts enabling us
to analyze 40 apps using IBM ASC: 27 of those apps are vulnerable
to IDOS; 3 apps are vulnerable to FI; and 10 apps are vulnerable to
XAS, as determined by a manual analysis.

Table 7 shows the results of LetterBomb’s vulnerability compari-
son with IBM ASC—including the three targeted vulnerability types
(Vuln. Types), and the number of apps detected as vulnerable ac-
cording to each approach and the ground truth. For all 40 apps,
LetterBomb is capable of identifying all their vulnerabilities. For
IDOS, IBM ASC misses 9 vulnerable apps, which constitutes a 33%
improvement for LetterBomb. In the case of XAS apps, IBM ASC
misses 6 apps, which constitutes a 60% improvement for LetterBomb.
For FI, IBM ASC misses a single app; thus, LetterBomb performs
33% better than IBM ASC.

Table 7: Vulnerability Comparison with IBM ASC
Vulnerable Instances Identified

Vuln. Type IBM ASC LetterBomb Total

IDOS 18 27 27
XAS 4 10 10
FI 2 3 3

Table 8 shows the execution time of IBMASC for each vulnerabil-
ity type, including the number of apps analyzed, average execution
time per app, and total execution time across all apps. On average,
IBM ASC takes about 20 to 30 minutes to analyze an app, and took
about 16.4 hours to analyze all apps. Recall that LetterBomb takes
between 3 to 4.3 minutes to analyze an app on average, which is
about 6.66 to 7 times faster than IBM ASC.

LetterBomb is many times faster than IBM ASC and detects 33%-
60% more vulnerabilities, and automatically generates exploits, a
feature IBM ASC does not support.

Table 8: Running time of IBM ASC in minutes
Vulnerability Type Apps Average Total

IDOS 27 24 644
XAS 10 20 60
FI 3 27.8 278

8 THREATS TO VALIDITY
In terms of accuracy, the main threat to external validity is the se-
lection of the five apps we utilized for answering RQ1. To mitigate
this threat, we selected apps varying across several dimensions,
allowing us to draw more general conclusions about Reaching In-
tents’s analysis results, be more confident in the accuracy of that
analysis, and reduces bias due to the limited number of apps. These
apps come from different application domains, and they vary in
size to as much as 460KSLOC and collectively contain over 4,200

669

ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek

program paths involving sophisticated usage of Intents that control
execution along different program paths. To identify these program
paths, we built automated analyses that determine Intent usage
and computed the program paths that contain them. All of these
apps are from Google Play, the official Android market maintained
by Google. The number of apps is limited to five to enable us to
evaluate manually the accuracy of LetterBomb’s reaching Intent
analysis on a large number of program paths—a painstaking task
that took about a year to complete.

For each vulnerability type, an instrumentation algorithm at
the app level is constructed, or the Android framework itself is
instrumented. However, each instrumentation algorithm or frame-
work modification involves only a few dozen lines of code. Once
constructed, instrumentation is fully automated, generally appli-
cable, and reusable across all apps. A user of LetterBomb need not
understand its implementation details.

LetterBomb’s implementation is currently focused on three vul-
nerability types. IDOS vulnerabilities, in particular, focus on null
checks. Although other forms of IDOS vulnerabilities may exist,
null dereference errors are highly common in Android apps [19],
making them a highly important target for automatic exploit gener-
ation. Furthermore, we selected diverse vulnerability types that can
result in severe security or privacy issues (e.g., spoofing or injection
of malicious input for XAS and bypassing authentication in the
case of FI). Supporting exploit generation for further vulnerability
types remains interesting future work.

9 RELATEDWORK
A large number of approaches have focused on identifying vulner-
abilities in Android apps [37]. A number of prominent approaches
have relied primarily on static analysis to identify ICC-based vul-
nerabilities, including ComDroid [16], one of the first major works
to characterize ICC-based vulnerabilities in detail; Epicc [34] and its
follow-upwork IC3 [33], extract information about Intents in a flow-
sensitive but not path-sensitive manner; IccTA [29] and COVERT
[11], identify vulnerabilities involving combinations of apps rather
than only individual apps. Woodpecker [25] analyzes capability
leaks, where permissions may be used by an app that does not
request it—a form of privilege escalation. FlowDroid [7] conducts
a static taint analysis to identify flows or privacy leakages from
sensitive Android API sources and sinks. None of these approaches
can determine program paths and the Intents needed to execute
them, especially since none leverage path-sensitive static analysis.
This prevents accurate satisfaction of πbuд in the AEG equation.
Furthermore, none are automated exploitation techniques, and as
such they have no mechanisms to satisfy πexploit .

Another set of approaches rely exclusively on dynamic analysis
to identify vulnerabilities. Buzzer [13] fuzzes Android system ser-
vices to identify vulnerabilities. Mutchler et al. [31] study Android
web apps for vulnerabilities. Stowaway [21] dynamically detects
permission overprivilege. IntentDroid [27] dynamically explores
an app’s Intent interface to identify vulnerabilities. None of these
techniques take steps to verify exploitability (i.e., πexploit). These
approaches inability to analyze non-executed code prevents them
from finding a large number of potential ICC-based program paths
that may exploit a vulnerability.

A variety of approaches rely upon a combination of static and
dynamic analysis to detect vulnerabilities. ContentScope [43] ana-
lyzes Content Providers of Android apps to determine cases where
those components may have their data leaked or polluted, which

occurs when an app manipulates another app’s Content Provider
without appropriate permissions or authorization. IPC Inspection
[22] is an OS-based defense mechanism that examines an app’s
privileges as it receives requests from other apps to prevent privi-
lege escalation attacks. AppAudit [42] focuses on detecting privacy
leakage vulnerabilities, but performs limited Intent analysis (e.g.,
fails to account for a variety of Intent attributes). AppCaulk [38]
detects and prevents data leaks through static analysis, dynamic
analysis, and the ability to specify policies regarding data leaks.
None of these techniques aim to generate exploits.

Certain approaches focus heavily on authentication or autho-
rization issues of Android apps. AuthDroid [41] is a framework
that detects vulnerable OAuth [26] implementations in an Android
app. A few approaches focus on SSL-based vulnerabilities in An-
droid apps. SMV-HUNTER [39] identifies SSL vulnerabilities that
may be used for man-in-the-middle (MITM) attacks. Onwuzurike
et al. [35] conduct experiments to measure SSL and privacy-leakage
vulnerabilities in apps and attempt to attack them using MITM at-
tacks. None of these approaches focus on automatically generating
exploits, particularly for the Intent interface of apps.

Two approaches have applied the theory of AEG to Linux bina-
ries, i.e., the original work on AEG [9] and a tool called MAYHEM
[15]. The original AEG work targets buffer overflow vulnerabili-
ties and relies on symbolic execution with pre-conditioned inputs,
whose goal is to direct execution toward vulnerable program paths.
Satisfying πexploit is achieved through formal verification, as op-
posed to instrumentation and test oracles for LetterBomb. MAYHEM
improves upon the original AEG by reducing execution time and
memory utilization of AEG, and further applies AEG to format-
string vulnerabilities. Neither of these approaches have been applied
to Android—whose managed code and different means of memory
management make it less susceptible to the types of control-flow
attacks that the original AEG and MAYHEM target.

10 CONCLUSION
This paper introduces LetterBomb, an approach for automatic ex-
ploit generation for vulnerabilities exposed from an Android app’s
Intent-based interface. LetterBomb leverages a highly accurate
path-sensitive Intent analysis and Intent generation, app-level and
platform-level instrumentation, and software test oracles to gener-
ate exploits. LetterBomb can reduce spurious vulnerabilities by 24%
to 96% and find vulnerabilities in an app, on average, within 3.12
to 4.30 minutes. Compared to a state-of-the-art detection approach
for three ICC-based vulnerabilities, LetterBomb obtains 33%-60%
more vulnerabilities at a 6.66 to 7 times faster speed. In the future,
we aim to build upon LetterBomb to (1) generate exploits for other
vulnerability types and (2) use the generated exploits to aid in au-
tomatically fixing Android app vulnerabilities by using automatic
program repair [24, 28].

ACKNOWLEDGMENTS
This work was supported in part by awards CCF-1252644, CNS-
1629771 and CCF-1618132 from the National Science Foundation,
HSHQDC-14-C-B0040 from the Department of Homeland Security,
and FA95501610030 from the Air Force Office of Scientific Research.

REFERENCES
[1] 2016. Strategy Analytics: Android Captures Record 88 Percent Share of Global

Smartphone Shipments in Q3 2016. https://goo.gl/b73xif . (2016).
[2] 2017. The Best Android Emulator For PC & Mac | Andy Android Emulator.

http://www.andyroid.net/. (2017).
[3] 2017. Drozer. https://labs.mwrinfosecurity.com/tools/drozer/. (2017).

670

https://goo.gl/b73xif
http://www.andyroid.net/
https://labs.mwrinfosecurity.com/tools/drozer/

Automatic Generation of Inter-Component Communication
Exploits for Android Applications ESEC/FSE’17, September 04–08, 2017, Paderborn, Germany

[4] 2017. Google Play. https://play.google.com/store. (2017).
[5] 2017. LetterBomb Website. http://tiny.cc/letterbomb. (2017).
[6] 2017. Number of smartphone users worldwide from 2014 to

2020 (in billions). https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/. (2017).

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. InACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2014). ACM, Edinburgh, UK, 29.

[8] Steven Arzt, Siegfried Rasthofer, Robert Hahn, and Eric Bodden. 2015. Using
Targeted Symbolic Execution for Reducing False-positives in Dataflow Analysis.
In Proceedings of the 4th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis (SOAP 2015). ACM, New York, NY, USA, 1–6.

[9] Thanassis Avgerinos, Sang Kil Cha, and David Brumley. 2011. Aeg: Automatic
exploit generation. In Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS 2011).

[10] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J. Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic Exploit Generation. Commun.
ACM 57, 2 (Feb. 2014), 74–84.

[11] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. COVERT:
Compositional Analysis of Android Inter-App Permission Leakage. IEEE Trans-
actions on Software Engineering (TSE) (2015).

[12] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2010. The SMT-LIB Standard
Version 2.6. (2010).

[13] Chen Cao, Neng Gao, Peng Liu, and Ji Xiang. 2015. Towards Analyzing the
Input Validation Vulnerabilities Associated with Android System Services. In
Proceedings of the 31st Annual Computer Security Applications Conference (ACSAC
2015). ACM, New York, NY, USA, 361–370.

[14] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. 2015. EdgeMiner: Automatically De-
tecting Implicit Control Flow Transitions through the Android Framework. In
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS).

[15] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. 2012. Unleashing Mayhem
on Binary Code. In 2012 IEEE Symposium on Security and Privacy. 380–394.

[16] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services (MobiSys
2011), Bethesda, MD, USA, June 28 - July 01, 2011. ACM,Washington, DC, 239–252.

[17] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

[18] L. de Moura and N. BjÂ£rner. 2009. Generalized, efficient array decision proce-
dures. In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009. 45–52.

[19] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A
Study of Android Application Security. In 20th USENIX Security Symposium, San
Francisco, CA, USA, August 8-12, 2011, Proceedings (SEC’11). USENIX Association,
San Francisco, CA, 21–21.

[20] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The Many Faces of Publish/Subscribe. ACM Comput. Surv. 35, 2 (June
2003), 114–131.

[21] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proceedings of the 18th ACMConference
on Computer and Communications Security (CCS ’11). ACM, Chicago, IL, 627–638.

[22] Adrienne Porter Felt, Steven Hanna, Erika Chin, Helen J. Wang, and Er Moshchuk.
2011. Permission re-delegation: Attacks and defenses. In 20th USENIX Security
Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings (SEC’11). San
Francisco, CA.

[23] Joshua Garcia, Daniel Popescu, Gholamreza Safi, William G. J. Halfond, and
Nenad Medvidovic. 2013. Identifying Message Flow in Distributed Event-based
Systems. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 367–377.

[24] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineering
(TSE) 38, 1 (Jan 2012), 54–72.

[25] Michael C. Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic
Detection of Capability Leaks in Stock Android Smartphones.. In 19th Annual
Network and Distributed System Security Symposium (NDSS 2012). San Diego, CA.

[26] Dick Hardt. 2012. The OAuth 2.0 authorization framework. (2012).

[27] Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic Detection of Inter-
application Communication Vulnerabilities in Android. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA 2015). ACM,
New York, NY, USA, 118–128.

[28] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-written Patches. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 802–811.

[29] Li Li, Alexandre Bartel, TegawendÃľ F. BissyandÃľ, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps.
In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1 (ICSE’15), Antonia Bertolino, Gerardo
Canfora, and Sebastian G. Elbaum (Eds.). IEEE, 280–291.

[30] Gero Mühl, Ludger Fiege, and Peter Pietzuch. 2006. Distributed event-based
systems. Springer Science & Business Media.

[31] Patrick Mutchler, Adam Doupé, John Mitchell, Chris Kruegel, and Giovanni
Vigna. 2015. A Large-Scale Study of Mobile Web App Security. In IEEE Mobile
Security Technologies, in conjunction with the IEEE Symposium on Security and
Privacy (MOST 2015).

[32] M. G. Nanda and S. Sinha. 2009. Accurate Interprocedural Null-Dereference
Analysis for Java. In International Conference on Software Engineering (ICSE 2009).
133–143.

[33] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
component Communication Analysis. In Proceedings of the 37th International
Conference on Software Engineering (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
77–88.

[34] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-Component Communica-
tion Mapping in Android: An Essential Step Towards Holistic Security Analysis.
In Proceedings of the 22th USENIX Security Symposium (SEC’13). USENIX Associa-
tion, 543–558.

[35] Lucky Onwuzurike and Emiliano De Cristofaro. 2015. Danger is my middle name:
experimenting with SSL vulnerabilities in Android apps. In Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks, New York,
NY, USA, June 22-26, 2015 (WISEC’15). ACM, 15:1–15:6.

[36] Daniel Popescu, Joshua Garcia, Kevin Bierhoff, and Nenad Medvidovic. 2012.
Impact Analysis for Distributed Event-based Systems. In Proceedings of the 6th
ACM International Conference on Distributed Event-Based Systems (DEBS ’12).
ACM, New York, NY, USA, 241–251.

[37] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. 2016. A Taxonomy and Qualitative
Comparison of Program Analysis Techniques for Security Assessment of Android
Software. IEEE Transactions on Software Engineering (TSE) (2016).

[38] Julian SchÃĳtte, Dennis Titze, and J. M. De Fuentes. 2014. AppCaulk: Data Leak
Prevention by Injecting Targeted Taint Tracking into Android Apps. In 13th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom’14). IEEE Computer Society, 370–379.

[39] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur
Khan. 2014. SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS
Man-in-the-Middle Vulnerabilities in Android Apps. In 21st Annual Network and
Distributed System Security Symposium (NDSS’14). San Diego, CA.

[40] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON ’99).

[41] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and
Dawu Gu. 2015. Vulnerability Assessment of OAuth Implementations in Android
Applications. In Proceedings of the 31st Annual Computer Security Applications
Conference, Los Angeles, CA, USA, December 7-11, 2015 (ACSAC’15). ACM, 61–70.

[42] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. 2015. Effective
Real-Time Android Application Auditing. In 2015 IEEE Symposium on Security
and Privacy (S&P’15). IEEE Computer Society, 899–914.

[43] Yajin Zhou andXuxian Jiang. 2013. Detecting Passive Content Leaks and Pollution
in Android Applications.. In 20th Annual Network and Distributed System Security
Symposium (NDSS 2013). San Diego, CA.

[44] Chaoshun Zuo, Jianliang Wu, and Shanqing Guo. 2015. Automatically Detecting
SSL Error-Handling Vulnerabilities in Hybrid Mobile Web Apps. In Proceedings of
the 10th ACM Symposium on Information, Computer and Communications Security
(ASIACCS’15). ACM, 591–596.

671

https://play.google.com/store
http://tiny.cc/letterbomb
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

	Abstract
	1 Introduction
	2 Background and Running Example
	3 LetterBomb Overview
	4 Vulnerability Identification
	5 Attack Intent Generation
	5.1 Reaching Intent Generation
	5.2 Vulnerability-Specific Intent Modification

	6 Exploit Oracle Instrumentation
	7 Evaluation
	7.1 RQ1: Reaching Intent Accuracy
	7.2 RQ2: Exploitability
	7.3 RQ3: Spurious Vulnerability Reduction
	7.4 RQ4: Runtime Efficiency
	7.5 RQ5: Vulnerability Detection Comparison

	8 Threats to Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

