
Identifying Message Flow in
Distributed Event-Based Systems

Joshua Garcia, Daniel Popescu∗, Gholamreza Safi,
William G.J. Halfond, and Nenad Medvidovic

Computer Science Department
University of Southern California

Los Angeles, CA, USA
{joshuaga,dpopescu,gsafi,halfond,neno}@usc.edu

ABSTRACT
Distributed event-based (DEB) systems contain highly-decoupled
components that interact by exchanging messages. This enables
flexible system composition and adaptation, but also makes DEB
systems difficult to maintain. Most existing program analysis tech-
niques to support maintenance are not well suited to DEB systems,
while those that are tend to suffer from inaccuracy or make assump-
tions that limit their applicability. This paper presents Eos, a static
analysis technique that identifies message information useful for
maintaining a DEB system, namely, message types and message
flow within a system. Eos has been evaluated on six off-the-shelf
DEB systems spanning five different middleware platforms, and has
exhibited excellent accuracy and efficiency. Furthermore, a case
study involving a range of maintenance activities undertaken on
three existing DEB systems shows that, on average, Eos enables an
engineer to identify the scope and impact of required changes more
accurately than existing alternatives.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; D.2.11 [Software Architectures]: Patterns

General Terms
Design, Experimentation

Keywords
distributed event-based systems, message flow, maintenance

1. INTRODUCTION
Distributed event-based (DEB) systems, developed using message-

oriented middleware (MOM) platforms, have become widespread.
In 2005, the market size for MOM licenses was about $1 billion [15];
by the end of the decade, the market for all middleware licenses was

∗Current affiliation: Google Inc, 340 Main St, Los Angeles, CA
90291, USA, popescu@google.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18-26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

nearly $20 billion, with MOM among the fastest growing middle-
ware platform types [11, 12]. One of the reasons for DEB systems’
popularity is that they are highly decoupled, which facilitates the
development of scalable, concurrent, and heterogeneous distributed
applications [17, 39, 22, 16]. To achieve this low coupling, the
components of a DEB system implicitly invoke other components
by publishing messages that a connector [40] routes to the correct
recipients; in turn, the recipient components may consume these
messages and perform some functionality in response.

Although implicit invocation provides many benefits, it renders
the maintenance of DEB systems labor-intensive and error-prone
[24]. A major reason for this is that implicit invocation makes it dif-
ficult to determine the types of messages passed within a system and
where those messages will flow at runtime. In particular, two types
of programming practices lead to this difficulty: high-branching
invocation statements and ambiguous interfaces. A high-branching
invocation statement is a type of statement that may have multiple
targets at runtime. Such statements often stem from mechanisms
used to implement implicit invocations, such as callback functions
and reflection [24]. Prior work has demonstrated that identifying
the targets of high-branching invocation statements through manual
inspection is challenging [24], while existing automated program
analysis techniques are unable to compute that information accu-
rately [31]. This makes it difficult for maintainers to determine the
impact of a change, identify dependencies between components,
and localize faults.

For DEB system maintenance, it is often necessary to know which
messages can be consumed by a component. However, components
in MOM-based DEB systems often rely on ambiguous interfaces.
An ambiguous interface accepts a single, abstract message type
and requires that a component internally filter and dispatch each
message based on the message’s attributes [19]. This complicates
maintenance because examining the entry point of a message does
not reveal explicit type information about the message — only that
the generic message type is consumed. Instead, the maintainer
must infer this information by other means, such as examining the
operations performed on a consumed message.

Researchers have recognized the need for automated support
of DEB system maintenance. However, existing techniques have
limitations that affect their accuracy and/or applicability to MOM
systems. For example, a suite of analysis techniques has focused on
improving the performance of DEB systems [23]. However, these
techniques rely on a set of added, specialized programming language
features [18] and do not handle the ambiguous interfaces prevalent
in MOM-based systems. Another technique, LSME [30], uses
developer-provided regular expressions to identify message types.
However, this technique neither identifies the specific attributes that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2491462

367

define a message type nor computes how messages may flow within
a component. Our prior work, Helios [32], is a semi-automated
technique that improves on LSME by using developer-provided
annotations to identify message flow within a component. Like
LSME, however, Helios is unable to identify the attributes that
uniquely identify each message type.

To address the limitations of existing approaches, we have de-
veloped a new technique, Eos, that automatically identifies a DEB
system’s message properties, specifically, the system’s message
types and message flow. The key insight underlying our work is
that these message properties can be identified by analyzing a DEB
system’s implementation and aggregating “message-revealing” in-
formation defined by statements along different possible execution
paths. Our approach leverages this insight to fully automate the iden-
tification of message information via a static program analysis. Our
evaluation of Eos on six existing DEB systems shows that our tech-
nique is both accurate and fast. Eos averaged over 90% precision
and recall of the subject systems’ message types and dependencies,
and could analyze each system in about a minute. Furthermore, a
case study involving a range of maintenance activities undertaken
on three existing DEB systems shows that, on average, Eos enables
an engineer to identify the scope and impact of required changes
more accurately than existing alternatives.

The remainder of the paper is organized as follows. Section 2
discusses how modern DEB systems are typically implemented and
existing challenges for identifying message flow in DEB systems.
Section 3 describes how Eos addresses these challenges. Section 4
presents our evaluation results. Section 5 overviews the relevant
related work. Section 6 presents our conclusions.

2. BACKGROUND AND MOTIVATION
A distributed event based (DEB) system consists of components

that send and receive messages in response to events that occur in
the system [29]. Components in DEB systems communicate via
two types of message interfaces: the message source is the interface
that publishes a message, while the message sink is the interface
that consumes a message. To publish a message, a DEB component
passes an instance of the MOM’s message type to a message source;
and to consume a message, the component provides a method whose
input parameter is the MOM’s message type. The specific API
a component must implement or use for the sinks and sources is
typically defined by the underlying MOM platform’s abstract base
component class. Similarly, the message types either implement or
extend the MOM platform’s base message type.

Figure 1 shows the partial implementation in Java of two sim-
ple DEB components, an adder (lines 1-26) and a printer (lines
28-31). Both extend the MOM’s abstract base component class
Component and provide an implementation of the message sink in-
terface, consume. The parameter to consume is of type Message,
which is the MOM’s base message type. Component DEBAdder re-
ceives a message at line 4, checks whether its name attribute is “add",
and, if so, calls the add method to perform the addition. The result
of the addition is published by calling the pub method, which wraps
a call to the MOM’s message source interface, publish. DEBAdder
can also receive messages whose name attribute is “resultRequest",
for which it creates and then publishes an instance of the MOM’s
base message type that contains the previously calculated sum value
(“lastResult"). The DEBPrinter component consumes messages
whose name attribute is “lastResult".

There are three different mechanisms for defining message types
in modern DEB systems: attribute-based, nominal, and subject-
based [29]. Attribute-based message types, which are defined as sets
of named attributes, are used in Figure 1. By convention, a message

1 public class DEBAdder extends Component{
2 private BigInteger sum = null;
3 private String sumStr = "sum";
4 public void consume(Message m) {
5 String nameAttr = (String)m.getAttr("name");
6 if ("add".equals(nameAttr))
7 { Message sumMsg = this.add(m);
8 this.pub(sumMsg); }
9 else if ("resultRequest".equals(nameAttr))

10 { if (sum != null)
11 { Message m2 = new Message();
12 m2.setAttribute("name", "lastResult");
13 m2.setAttribute(sumStr, sum);
14 this.pub(m2); }}}
15
16 private Message add(Message m3){
17 Integer n1 = m3.getAttr("num1");
18 Integer n2 = m3.getAttr("num2");
19 sum = n1 + n2;
20 Message m4 = new Message();
21 m4.setAttribute("name", "currentSum");
22 m4.setAttribute(sumStr, sum);
23 return m4;}
24
25 private pub(Message m){
26 publish(m);}
27
28 public class DEBPrinter extends Component{
29 public void consume(Message m){
30 String nameAttr = m.getAttr("name");
31 if ("lastResult".equals(nameAttr){...}}}

Figure 1: The DEBAdder and DEBPrinter components

type has a special attribute that names the message, which we refer
to as the “name” attribute. Nominal message types are explicitly
declared in the underlying programming language’s type system.
For example, a class called Add that inherits from the class Message
would be a nominal message type. In subject-based message typing,
each message type is defined via a pre-determined string subject
field. An example is a message with a “subject” field whose value is
“/Message/Add”. Both nominal and subject-based message types can
be represented as attribute-based types: for subject-based messages,
a corresponding attribute-based type has an attribute to represent
the subject field; for nominal types, a corresponding attribute-based
message type has an attribute to represent the programming lan-
guage class of the nominal type. Therefore, for simplicity of the
explanation, we restrict our discussion in the rest of this paper to
attribute-based messages. However, it is important to note that our
technique is not limited to attribute-based messages. In fact, two
of the MOM platforms used in our evaluation (Section 4) support
nominal message typing.

The message types in a given DEB system can be divided into
published message types (PMTs), which are the types sent via a
message source interface, and consumed message types (CMTs),
which are the types received via a message sink interface. An exam-
ple PMT published at line 8 is tsum ← {(“name”,“currentSum”),
(“sum”,ε)}; an example CMT of DEBAdder is tadd ← {(“name”,
“add”),(“num1”,ε),(“num2”,ε)}. Note that ε denotes an unknown
value. A message type, such as tlast = {(“name”,“lastResult”),
(“sum”,ε)}, can be both a PMT and a CMT since it is published by
DEBAdder at line 14 and consumed by DEBPrinter at line 31.

There are two types of relationships between PMTs and CMTs:
an intra-flow dependency represents a relationship where a PMT
may be published by a given component as the result of the compo-
nent’s consumption of a CMT; an inter-flow dependency represents
a relationship where a PMT may be published by one component
and then consumed by another component. In DEBAdder, an intra-

368

flow dependency exists between tadd and tsum since the consumption
of tadd leads to the publication of tsum at line 8. An inter-flow de-
pendency exists between DEBAdder and DEBPrinter since tlast ,
published at line 14, can be consumed at line 31 of Figure 1.

As mentioned in Section 1, identifying the types and flow of
messages is difficult due to the use of ambiguous interfaces and
implicit invocation [24]. Ambiguous interfaces in DEB systems
make it difficult to identify the message types that can be published
or consumed at a given source or sink. For example, consider
the two message interfaces shown in Figure 1, consume(Message
m) and publish(Message m). These interfaces only indicate that
the consumed and published types are of the base type Message.
However, from our inspection of the code, we know that the types
are actually tadd and tlast . Similarly, implicit invocation makes it
difficult to identify message flow. For example, without knowing
the message types present at lines 26 and 29 of Figure 1, it would
be challenging for a software maintainer to determine whether there
exists an inter-flow dependency among these statements, as there is
no explicit definition of the relationship in the code.

Simple and straightforward solutions are unlikely to remedy
this problem or would result in crude estimates of the correct re-
lationships. For example, a naive solution for identifying mes-
sage types would be to convert them all to nominal types (e.g.,
consume(AddMsg m) and publish(LastResult m)). This would
allow one to subsequently leverage explicit subtyping relationships
among the resulting nominal types. However, even if a MOM plat-
form were to provide such interfaces, the underlying programming
languages would still be unable to support dynamic dispatch of
appropriate messages to these more specific interfaces [14]. Sim-
ilarly, one can simply assume that all message sources could be
connected to all message sinks, but this would result in significant
over-approximation of the message flows.

A key insight underlying our approach is that message types and
their relationships can be identified through systematic analysis
of a DEB system’s components. By focusing on certain kinds of
statements, which we call message revealing statements, we are able
to identify useful information about the message attributes that make
up a message type. By themselves, these statements do not give us a
complete picture; but by combining and aggregating the information
along control-flow paths that originate from message sources or
terminate at message sinks, we can identify message types. For
example, consider the CMT tadd at line 6. Here we can see that
along the path where the condition at line 6 is true, a message object
originating from the message sink is assumed to have an attribute
“name” with the value “add”, and then also the attributes “num1” and
“num2,” which are accessed at lines 17-18. Similarly, consider the
PMT tlast , created at line 11. Along a path containing lines 11-14,
the message object published at line 14 is created at line 11 and has
two attributes, “name" and “sum", added on lines 12-13 before it is
published. Identifying these message types also allows us to identify
flows and relationships among the statements that define a message
type. In Section 3, we describe how we formalize this intuition to
create an automated analysis that is able to detect message types
and flows in a DEB system.

3. DEB SYSTEM ANALYSIS IN EOS
Eos is a static analysis technique for identifying (1) attribute-

based message types and (2) message flow in DEB systems. The
input to Eos is the implementation of the DEB system and a specifi-
cation of the underlying MOM’s API. This specification comprises
the generic message class; methods that access and modify a mes-
sage or its attributes; and, for MOMs that support attribute-based
message types, the name of the special attribute that denotes a mes-

sage name. From our experience, all major MOM frameworks
provide APIs for this functionality and the specification needs to
only be performed once per MOM API. The output of Eos is the
DEB system’s Message Flow Graph (MFG), which shows the sys-
tem’s message types and the relationships between those types. The
MFG is a directed graph (C,P,E), where C is the set of consumed
message types (CMTs), P is the set of published message types
(PMTs), and E is the set of directed edges representing intra-flow
(C×P) dependencies and inter-flow (P×C) dependencies.

Eos consists of two core analyses, findCMT , which computes
CMTs and findPMT , which computes PMTs. Both analyses are
defined as summary-based iterative data-flow analyses that prop-
agate message-flow information extracted from different types of
message revealing statements. The analyses assume that aliases can
be resolved precisely. Each analysis propagates the message-flow
information using four data-flow sets [5] for each statement s in
a system’s implementation: in[s] contains information that flows
along a program path to s; gen[s] contains information that is gener-
ated at s; kill[s] stores information that is no longer valid because of
information generated at s; and out[s] stores information that flows
to s’s successors. All four data-flow sets are initially empty. As
detailed in Sections 3.1 and 3.2, the analyses update the data-flow
sets for each statement in a method until a fixed point is reached.

Both findCMT and findPMT compute a summary of each method
in a DEB component. The method summary describes the message-
flow information that can be inferred from a method. Method sum-
maries make Eos’s analyses inter-procedural, thus allowing an entire
DEB application to be analyzed. Methods are analyzed in reverse
topological order with respect to the DEB component’s call graph
so that a given method’s summary is computed before any methods
that call it are analyzed. Cycles in the call graph (e.g., from recur-
sion) are handled in the standard manner, by treating the involved
methods as one “super method.”

In both analyses, Eos must calculate the names of attributes and
the value of the special message-name attribute. To do this, Eos
uses string constant propagation, which provides a precise solution
since, by convention, DEB systems use constant strings to define
these values. Eos does not calculate the value of other attributes,
and we use ε to denote these unknown values. Eos stores attribute
information in two sets, Attr and TypeHier. Attr is a set of pairs
(t,(name,value)), where t is a message type and (name,value) is
the name and value of one of t’s attributes. TypeHier is a set of
message type pairs, (t, t ′), where t ′ extends t by including all of t’s
attributes and a new attribute name-value pair.

Next, we define the analysis for identifying CMTs (Section 3.1)
and describe the key steps of the analogous analysis for identifying
PMTs (Section 3.2). We then discuss how the CMTs and PMTs are
used to identify message-flow dependencies (Section 3.3).

3.1 Identifying Consumed Message Types
The findCMT analysis is shown as Algorithm 1 and computes

the information needed to identify a DEB component’s CMTs. The
input to findCMT is a single method of a DEB component and its out-
puts are the Attr, TypeHier, and in sets. To compute CMTs, findCMT
identifies and tracks three types of Consumed Message Revealing
(CMR) statements — CMR-entry, CMR-attr, and CMR-invoke. To-
gether, these statements identify the message types entering methods
and the attributes that could be contained in those message types.
Eos uses the information extracted from these statements to identify
the attributes of each CMT.

CMR-entry statements are points at which messages enter a
method. findCMT creates a reference-type pair to track each mes-
sage that originates from a CMR-entry. A reference-type pair is an

369

Algorithm 1: findCMT
Input: meth ∈Methods
Output: Attr,TypeHier, in

1 gen[entry] = {(p, tentry) | p ∈ P∧ typeOf (p) = Message}
2 workList←{entry of method meth}
3 repeat
4 s← first statement of workList
5 match s do
6 case “if(rv.equals(rattrVal)){. . .}”
7 foreach (r,attrName) ∈ getAttrInfo(rattrVal) do
8 handleCMRAttr(s,r,attrName,rv)

9 case “rattrVal=r.getAttribute(attrName);”
10 handleCMRAttr(s,r,attrName,ε)
11 case “if(r.hasAttribute(attrName)){. . .}”
12 handleCMRAttr(s,r,attrName,ε)
13 case “r = f (A);”
14 updateSets(gen[s],Attr,TypeHier,

A,summary(f))
15 kill[s]←{(r, ti) | (r, ti) ∈ in[s]∧ i ∈ Stmts}
16 case “ri = r j;”
17 gen[s]←{(ri, tk) | (r j, tk) ∈ in[s]∧ k ∈ Stmts}
18 kill[s]←{(ri, tk) | (ri, tk) ∈ in[s]∧ k ∈ Stmts}
19 case “return ri;”
20 kill[s]←{(r, t j) | (r, t j) ∈ in[s]∧ r 6= ri ∧ j ∈ Stmts}

21 out[s]← (in[s]\ kill[s])∪gen[s]
22 foreach s′ ∈ succ(s) do in[s′]← in[s′]∪out[s]
23 foreach s′ ∈ succ f (s) do in[s′]← in[s′]∪ in[s]
24 workList← workList∪{s′ | (s′ ∈

succ(s)∪ succ f (s))∧ changed(in[s′])}
25 until workList = /0

Procedure 1: handleCMRAttr(s, r, attrName, val)
Input: s ∈ Stmts,r,attrName,val

1 TypeHier← TypeHier∪{(ti, ts) | (r, ti) ∈ in[s]∧ i ∈ Stmts}
2 Attr←Attr∪{(ts,(attrName,val)) | (ti, ts) ∈ TypeHier∧ i ∈ Stmts}
3 gen[s]←{(r, ts) | (r, ti) ∈ in[s]∧ i ∈ Stmts}
4 kill[s]←{(r, ti) | (r, ti) ∈ in[s]∧ i ∈ Stmts}

ordered pair (r, ti) where r is a reference to a message object and
ti represents the message type assigned to that object. We use the
subscript i to denote the line number at which the message type t
originated. All four data-flow sets (in, out, gen, and kill) propagate
reference-type pairs. At line 1 of Algorithm 1, findCMT creates a
reference-type pair (p, tentry) for each parameter p of type Message
in method meth’s parameters P. These reference-type pairs are
added to gen[entry] so that they will be propagated to other CMR
statements. For example, for the method entry at line 4 of Figure 1,
gen[entry] = {(m, t4)}.

CMR-attr statements perform operations on an attribute of a
message object. findCMT can identify attribute information by
correlating these operations with the statement’s reaching reference-
type pairs, i.e., reference-type pairs that flow into the statement via
its in set. There are three variants of CMR-attr statements: (1) if
statements that check whether an attribute has a particular value, (2)
statements that retrieve an attribute from a message object, and (3)
if statements that check whether a message object has an attribute.

The first CMR-attr variant, handled at line 6 of Algorithm 1,
allows findCMT to infer the value of an attribute, the name of that
attribute, and the message type to which that attribute belongs. The
first CMR-attr variant checks if an attribute, referenced by rattrVal,
has a predetermined value, referenced by rv. An example of this
variant appears at line 6 of Figure 1, where the predetermined value
“add" is compared to the value of the attribute reference nameAttr.
From this CMR-attr variant, findCMT can infer that the value of the
attribute referenced by nameAttr is equal to “add" along one path

originating from the CMR-attr statement and is not equal to “add"
along the other path.

Handling the first variant of CMR-attr statements involves three
steps: (1) identify the name and value of the attribute correspond-
ing to rattrVal as well as the reference to the attribute’s containing
message object, (2) create a new message type from the identified
attribute information, and (3) propagate different information along
the two branches originating from the CMR-attr statement. In the
first step, findCMT looks for definitions of rattrVal by traversing
all of its definition-use chains. Specifically, getAttrInfo traverses
each definition-use chain of rattrVal until it reaches a call of the
form r.getAttribute(attrName), at which point it adds a pair (r,
attrName) to its result set. This internal logic of getAttrInfo is
straightforward and is thus elided from Algorithm 1. For the exam-
ple at line 6 of Figure 1, the call to getAttrInfo(nameAttr) returns
(m,“name”).

The second step begins once getAttrInfo has identified all defini-
tions of rattrVal. findCMT iterates over getAttrInfo’s result set and
calls handleCMRAttr (Procedure 1), which creates new message
types from the identified attribute information. For the example
at line 6 of Figure 1, findCMT calls handleCMRAttr with (6,m,
“name”,“add”). The in[6] set contains (m, t5) as the sole reaching
reference-type pair. handleCMRAttr creates a new message type t6
from t5 and records this by adding (t5, t6) to TypeHier. handleCM-
RAttr also updates Attr with (t6,(“name”,“add”) to match the newly
created type with the identified attribute information. Finally, han-
dleCMRAttr creates a new reference-type pair (m, t6), adds (m, t6) to
gen[6], and adds (m, t5) to kill[6].

In the third step, findCMT uses branch-sensitive transfer func-
tions [8, 9] to propagate the new reference-type pairs along one
branch of the CMR-attr statement but not along the other branch.
At line 22 of Algorithm 1, findCMT propagates the newly gener-
ated reference-type pairs to the in set of the CMR-attr’s successor
statement on the true branch. So at line 6 of Figure 1, findCMT
propagates (m, t6) along the true branch to in[7]. At line 23 of Algo-
rithm 1, findCMT propagates the CMR-attr statement’s unmodified
reaching reference-type pairs to the in set of its successor on the
false branch. So at line 6 of Figure 1, findCMT propagates (m, t5)
along the false branch to in[9].

The second variant of CMR-attr, identified at line 9 of Algorithm
1, allows findCMT to infer the name of an attribute and the message
type to which that attribute belongs. Specifically, this CMR-attr
variant retrieves the attribute’s name, attrName, from the message
object referred to by r. findCMT can infer that all message types
paired with r in the CMR-attr statement’s reaching reference-type
pairs are expected to contain the retrieved attribute, attrName. As in
the previous variant, findCMT calls handleCMRAttr; however, no
attribute value information is provided in this case and the unknown
value, ε, is passed to handleCMRAttr instead. Since this variant of
CMR-attr is not contained within an if statement, all of the new
reference-type pairs are propagated to the in set of s’s successor by
line 22 of Algorithm 1 (succ f (s) is undefined for non-branching
statements).

To illustrate, consider the CMR-attr statement at line 5 of Figure 1.
To analyze the statement, findCMT calls handleCMRAttr with the
arguments (5,m,“name”,ε). The sole reaching reference-type pair
for line 5 is (m, t4), so handleCMRAttr adds (t4, t5) to TypeHier. The
Attr set is updated with (t5,(“name”,ε)). Finally, gen[5] is set to
{(m, t5)} and kill[5] is set to {(m, t4)}. The transfer function at line
22 of Algorithm 1 propagates (m, t5) to in[6].

The third variant of CMR-attr, handled at line 11 of Algorithm 1,
accounts for if statements that check whether a message object re-
ferred to by r has an attribute named attrName. From this CMR-attr

370

statement, findCMT can infer that, along one path originating from
the statement, all message types associated with r in the reaching
reference-type pairs contain this attribute and, along the other path,
they do not. findCMT handles this CMR-attr statement by (1) cre-
ating, for each reaching reference-type pair that contains r, a new
message type that includes the attribute (as is done with the second
CMR-attr variant), and (2) propagating branch-sensitive information
(as is done with the first variant).

CMR-invoke statements, handled at line 13 of Algorithm 1, are
invocations of DEB component methods. At the point of each CMR-
invoke, findCMT incorporates information from the summary of
the invocation’s target method. A method’s summary comprises
the contents of the Attr, TypeHier, and out sets of the method’s
exit point. If any of these sets include message types defined by the
method’s formal parameters, then that means the CMR statements in
the method operate on the arguments provided by the CMR-invoke.
To account for the actions within the target method, updateSets
substitutes the message types of the CMR-invokes’s arguments for
the message types defined by the corresponding formal parameters
in the summary. The target method’s summary is then used to
update the Attr, TypeHier, and gen sets of the statement containing
the CMR-invoke.

To illustrate, consider the CMR-invoke statement at line 7 of
Figure 1. The summary of the invoked method add, whose imple-
mentation starts on line 16 of Figure 1, is: Attr← {(t17,(“num1”,
ε)),(t18,(“num2”,ε))}; TypeHier ← {(t16, t17),(t17, t18)}; and
out[addexit]← /0. t16 is highlighted because it is the message type
referred to by add’s formal parameter m3, and will be substituted
with a message type from an argument at a call site. In this case,
the argument provided by the CMR-invoke, m, has a message type
of t6, which will be substituted for t16. updateSets performs this
substitution, sets gen[7] to out[addexit], and adds the summary’s Attr
and TypeHier sets to the corresponding sets in findCMT .

The last two case blocks in Algorithm 1 handle assignment and
return statements. Line 16 handles assignment statements by up-
dating the statement’s gen and kill sets so that message reference
ri points to all the message types pointed to by r j and the reaching
reference-type pairs involving ri are no longer propagated. Line 19
of Algorithm 1 handles return statements by updating the kill set of
the statement so that only the reaching reference-type pairs refer-
enced by ri are allowed to propagate beyond the return statement.

findCMT analyzes each method in the DEB component once
and the analysis of each method terminates when the worklist is
empty. Since findCMT only adds items to the worklist when an
in set changes, termination occurs when all in sets have reached a
fixed point. The in sets will reach a fixed point because there is a
finite upper bound on each in set—the set of all reference-type pairs
defined in the method—and each iteration of the algorithm causes
the in set to monotonically grow with new reference-type pairs. In
general, iterative data flow analysis is O(n2), but with the optimal
statement traversal it can be O(cn) where c is the maximum loop
nesting depth in the method’s control flow graph. The DU chains
used by getAttrInfo can be pre-computed for each method in O(n2)
using standard reaching definition [5].

After findCMT analyzes all methods of a DEB component, Eos
identifies the attributes of each CMT by using the information con-
tained in the Attr and TypeHier sets. By definition, a CMT originates
from a message sink interface. Therefore, Eos identifies the mes-
sage type tsink defined at the message sink, extracts each sequence
of pairs in TypeHier that extend tsink, and finds their correspond-
ing attributes in Attr. For example, consider the type t18. The
set of pairs in TypeHier that extends t18 is {(t4, t5),(t5, t6),(t6, t17),
(t17, t18)}, where t4 = tsink. For these message types, the relevant

Algorithm 2: findPMT
Input: meth ∈Methods,Attr,TypeHier, inc
Output: Attr,PubTypes,TypeHier

1 workList←{entry of method meth}
2 gen[entry] = {(p, tentry) | p ∈ P∧ typeOf (p) = Message}
3 repeat
4 s← first statement of workList
5 in[s] =

⋃
p∈pred(s) out[p]

6 match s do
7 case “r = createMessage();”
8 gen[s]←{(r, ts)}
9 kill[s]←{(r, ti) | (r, ti) ∈ in[s]∧ i ∈ Stmts}

10 case “r.setAttribute(attrName,val);”
11 TypeHier← TypeHier∪{(ts, ti) | i ∈ Stmts∧ (r,

ti) ∈ inc[s]∪ in[s]}

12 Attr← Attr∪{(ts,(attrName,val)) | (ts, ti) ∈ TypeHier}
13 gen[s]←{(r, ts) | (r, ti) ∈ in[s]∪ inc[s]∧ i ∈ Stmts}
14 kill[s]←{(r, ti) | (r, ti) ∈ in[s]∪ inc[s]∧ i ∈ Stmts}
15 case “publish(r);”
16 PubTypes← PubTypes∪{(ti,s) | i ∈ Stmts∧ (r,

ti) ∈ in[s]∪ inc[s]}
17 case “r = f (A);”
18 updateSets(gen[s],Attr,TypeHier,PubTypes,A,

summary(f))
19 kill[s]←{(r, ti) | (r, ti) ∈ in[s]∧ i ∈ Stmts}
20 case “ri = r j;”
21 gen[s]←{(ri, tk) | (r j, tk) ∈ in[s]∧ k ∈ Stmts}
22 kill[s]←{(ri, tk) | (ri, tk) ∈ in[s]∧ k ∈ Stmts}
23 case “return ri;”
24 kill[s]←{(r j, ti) | (r j, ti) ∈ in[s]∧ ri 6= r j ∧ i ∈ Stmts}
25

26 out[s]← (in[s]\ kill[s])∪gen[s]
27 workList← workList∪{s′ | s′ ∈ succ(s)∧ changed(out[s])}
28 until workList = /0

set of pairs in Attr is {(t5,(“name”,ε)),(t6,(“name”,“add”)),(t17,
(“num1”,ε)),(t18,(“num2”,ε))}. t4 has no attributes. Thus, the
attributes of t18 extracted by Eos are {(“name”,“add”),(“num1”,
ε),(“num2”,ε)}. Note that, for a given type t ′ created from t, the
value of each attribute of t ′ (e.g., (“name”,“add”)) takes precedence
over prior values of the same attribute (in this case, (“name”,ε)).

3.2 Identifying Published Message Types
The findPMT analysis is shown in Algorithm 2 and computes

the information needed to identify a DEB component’s PMTs. The
algorithm takes as its input a single method of a DEB component
and the Attr, TypeHier, and in sets computed by findCMT; for clarity,
in this section we denote the latter as inc. findPMT utilizes the inc
set in addition to its own in set since a CMT can be published after
it is consumed. The outputs of findPMT are updated versions of the
Attr and TypeHier sets and a new set called PubTypes. PubTypes is
a set of pairs (ti, l), where ti is a PMT that originated on line i of the
program, while l denotes the line where the type is published.

To compute PMTs, findPMT identifies and tracks four types
of Published Message Revealing (PMR) statements: PMR-create,
PMR-attr, PMR-publish, and PMR-invoke. Together, these state-
ments identify the message types created in methods, the attributes
that could be contained in those message types, and which of these
types are published. In the remainder of this section, we elaborate
on the four types of PMR statements.

PMR-create statements initialize a reference to an object of type
Message. There are two variants of PMR-create: statements that
explicitly create a new instance of Message via a method (e.g.,
new instructions or factory methods), and statements that implicitly
create such instances via the list of formal parameters to a method.

371

An example of the first PMR-create variant is shown on line 20 of
Figure 1. The add method’s declaration on line 16 of Figure 1 is
an example of the second PMR-create variant. Algorithm 2 tracks
references to message objects identified at PMR-create statements to
determine when new attributes are added to the message objects via
PMR-attr statements or when they are published via PMR-publish
statements. The two variants are handled at lines 7 and 2 of findPMT ,
respectively.

A PMR-attr statement adds an attribute to a message object and
is handled at lines 10–14 of Algorithm 2. These statements are
analogous to CMR-attr statements, and allow findPMT to infer the
set of attributes that are added to a message type by extending
each of the PMR-attr’s reaching reference-type pairs with the newly
identified attribute. To illustrate, consider the PMR-attr statement
at line 21 of Figure 1. At that line, findPMT determines that any
messages type referred to by message object m4 has the attribute
(“name”,“currentSum”).

PMR-publish statements allow findPMT to infer which message
types are actually published. PMR-publish statements are han-
dled at line 15 of findPMT . All message types in the PMR-publish
statement’s reaching reference-type pairs that correspond to the pub-
lished reference (r) are PMTs. These PMTs are added to the the
PubTypes set. For example, line 26 of Figure 1 is a PMR-publish
statement. findPMT determines that any message types referenced
by m are PMTs and are added to the PubTypes set.

PMR-invoke statements, handled at line 17 of findPMT , are invo-
cations of DEB component methods. These are handled in a similar
way to CMR-invoke statements. The only difference is that the
method summaries also include the PubTypes set, which is handled
in the same way as the Attr, TypeHier, and out sets.

To illustrate, consider the PMR-invoke statement at line 7 of
Figure 1. The summary of method add allows findPMT to infer
that the message type referred to by sumMsg at line 7 of Figure
1 has the attributes (“name”,“currentSum”) and (“sum”,ε). Line
8 of Figure 1 shows a PMR-invoke statement where the message
types in the summary depend on the arguments at the call site of
an invoked method. This statement calls the method pub, whose
summary indicates that message types referred to by m are PMTs.
updateSets identifies sumMsg as the argument corresponding to the
formal parameter m of pub and adds any message types referred to
by sumMsg to the PubTypes set, which indicates that those types are
PMTs.

The last two case blocks in Algorithm 2 handle assignment and
return statements in the same way as findCMT . Line 20 ensures that
reference-type pairs are propagated properly when references are
copied. Line 23 ensures that only the reaching reference-type pairs
relevant to the returned reference flow out of it.

The runtime and termination conditions of findPMT are analogous
to findCMT . After findPMT completes the processing of all methods
of a DEB component, the PubTypes set contains reference-type
pairs that can be used to compute the PMTs. This is done using the
attribute information from the Attr and TypeHier sets in the same
manner as described in Section 3.1.

3.3 Identifying Message Dependencies
Eos identifies intra-flow dependencies by combining the con-

sumed and published message type information for a DEB compo-
nent. An intra-flow dependency exists when a message type may
be published by a given component as a result of having consumed
another type. More precisely, when a set of CMTs, TC, flows into a
PMR-publish statement that publishes the set of message types TP,
then the intra-flow dependencies for that PMR-publish statement
comprise all edges in the set TC×TP. The identification process for

TC and TP is as follows. For each PMR-publish statement at line l
of the DEB system’s implementation, Eos identifies all of the pairs
(ti, l) in PubTypes. The set of all message types ti published at l is
TP. Eos then examines the inc[l] set for the statement at l to identify
all message types TC that flow into the corresponding statement as
part of its reaching reference-type pairs.

To illustrate, consider the PMR-publish at line 8 of Figure 1,
which publishes message type t22. The inc[22] set has the reference-
type pair (m3, t18), which indicates that t18 flows to the statement
where t22 is published. Therefore, Eos creates the intra-flow depen-
dency (t18, t22). Other intra-flow dependencies for the DEBAdder
component in Figure 1 are computed in an analogous manner. The
resulting dependency chains allow Eos to transitively establish the
dependency between (m, t4) and (m, t25), i.e., to relate the message
referenced by m that is consumed at DEBAdder’s sink on line 4
with the message referenced by m that is published by DEBAdder’s
source on line 26.

Eos creates inter-flow dependencies by matching PMTs of a com-
ponent with CMTs of another component. For a given PMT p
and CMT c, an inter-flow dependency from p to c is created iff
attrib(p)⊇ attrib(c), where attrib is a function that returns the set
of attribute names of a message type as well as the value of the
special message-name attribute. This relationship ensures that a
component will not attempt to access attributes that are not present
in a message it receives [39]. Eos computes the inter-flow dependen-
cies by comparing all published and consumed messages to deter-
mine whether this relationship holds. For the example in Figure 1,
the only inter-flow dependency is (t13, t31), where t13 = {(“name”,
“lastResult”),(“sum”,ε)} and t31 = {(“name”,“lastResult”)}.

Note that Eos considers only the names, and not the types, of the
published (p) and consumed (c) messages’ attributes. An obvious
alternative is to consider the attributes’ types as well: an attribute
that has been set in a component that publishes p can only be prop-
erly processed by a component that consumes c if the attribute’s
type in p (e.g,. integer) is the same as or a subtype of the attribute’s
type in c (e.g., float). This alternative is more conservative and
avoids recording potentially spurious dependencies in the case of
attributes that have identical names but unrelated types. Eos can be
extended to provide this additional attribute-type analysis. However,
we opted for the name-only alternative, because it can aid developers
in system verification: if Eos does not record dependencies between
components that are intended to interact but whose corresponding
attributes have unintentionally been assigned different types, devel-
opers will not be alerted that such dependencies, in fact, exist and
will have to localize any resulting runtime errors using some other
means.

4. EVALUATION
In this section we present the results of an empirical evalua-

tion of Eos. In the evaluation we measure the accuracy of Eos in
determining message properties, i.e., CMTs, PMTs, and message
dependencies; its usefulness for change impact analysis, a common
software maintenance task; and its execution time. Specifically, we
investigate the following three research questions:
• RQ1: How accurate is Eos in identifying the message proper-

ties of MOM-based systems?
• RQ2: Does Eos improve the effectiveness of change impact

analysis as compared to other approaches?
• RQ3: What is Eos’s execution time?

4.1 Subject Systems and Implementation
Table 1 provides an overview of our six subject systems, five of

which have been described or used in prior publications [26, 25, 28,

372

Table 1: DEB Systems Used in the Evaluation
App Name App Type SLOC Comps Msg Type MOM

KLAX Arcade Game 4.5K 14 attr-based c2.fw [26]

DRADEL Architectural
Analysis

10.8K 8 attr-based c2.fw [26]

ERS Emergency
Response

7.1K 11 attr-based Prism-MW
[25]

Stoxx Stock Ticker
Notification

6.2K 4 nominal REBECA
[28, 29]

jms2009-PS JMS Bench-
mark

18.6K 4 attr-based JMS [37,
36]

Spark [4] Chat Client 85K 59 nominal Smack [3]

29, 37, 36, 40]. Column App Type notes the application domain;
SLOC shows the source-lines-of-code; Comps shows the number
of DEB components in each system; Msg Type indicates whether a
system relies on nominal, subject-based, or attribute-based message
types; and MOM specifies each system’s underlying MOM platform.
All of the subject systems are written in Java and together make use
of five different MOM platforms. The application domains span
gaming, distributed systems, financial information systems, supply
management, chat clients, and enterprise systems.

The Eos algorithms are implemented in Java and Scala. The
implementations leverage the Soot [42] program analysis library
to generate call graphs and control-flow graphs. We use Soot’s
built-in class-hierarchy analysis (CHA) to resolve aliases. The
Eos implementation is available online [1]. The evaluation was
performed on a system running Windows 7 Professional with a
quad-core i7 2.80GHz processor and 8GB of memory.

4.2 RQ1: Accuracy of Eos
To address the first research question, we determined the accuracy

of the set of message properties identified by Eos. We omit inter-flow
dependencies since they are directly dependent on the accuracy of
the other identified message properties. The results of Eos’s analysis
were compared against the “ground truth” results to calculate Eos’s
precision and recall. We did not compare against LSME because
it is unable to report message types of attribute-based systems or
identify intra-flow dependencies for any MOM-based systems.

To determine the “ground truth” for the subject systems, three
graduate students manually analyzed the source code of each subject
system and identified all message types and intra-flow dependencies.
The results of this manual inspection are available in [1]. In order to
perform the requisite comparisons, we defined two notions of equal-
ity, one for message types and another for intra-flow dependencies.

For the purpose of our evaluation, a message type extracted by
Eos, tEos, can be classified as matching or spurious. tEos is match-
ing if and only if there exists a message type in the ground truth,
tgt , where attrib(tEos) = attrib(tgt). tEos is spurious if it does not
match any tgt . All tgt for which there is no matching tEos are clas-
sified as missing. Similarly, an intra-flow dependency extracted by
Eos, (tEosSrc, tEosTgt), matches a ground truth intra-flow dependency,
(tgtSrc, tgtTgt), if and only if attrib(tEosSrc) = attrib(tgtSrc)
∧ attrib(tEosTgt) = attrib(tgtTgt). Any intra-flow dependency ex-
tracted by Eos that does not match a ground truth intra-flow de-
pendency is considered spurious. Any ground truth intra-flow de-
pendency that is not matched by a dependency extracted by Eos is
considered missing.

Note that these definitions cause certain errors in the analysis
to count twice against Eos’s accuracy. For example, if a message
type in the ground truth is tgt1 = {(“name", “n"), (“a1", ε), (“a2",
ε)}, but Eos only extracts the message type tEos1 = {(“name", “n"),

(“a1", ε)}, we count tEos1 as a spurious message type; furthermore,
if no other message type extracted by Eos matches tgt1, tgt1 counts
as missing.

Table 2 shows the precision (PR) and recall (RE) results exhibited
by Eos for each subject system’s CMTs, PMTs, and intra-flow
dependencies. The table also depicts how many message types and
intra-flow dependencies extracted by Eos were considered matching
(true-positive, TP), spurious (false-positive, FP), and missing (false-
negative, FN). The results reported in Table 2 were manually verified
by the authors.

Overall, the results indicate that Eos is highly accurate. For two of
the subject systems—Stoxx and Spark—the precision and recall are
100% across all message properties. For two subjects—DRADEL
and ERS—the results are almost perfect, varying between 95%
and 100% across all message properties. For the remaining two
systems—KLAX and jms2009-PS—the precision and recall are
somewhat lower: they vary from 73% to 100% across the different
message properties. Next, we discuss the reasons why Eos did not
perform as well on these systems.

There are three reasons for the decrease in Eos’s precision on
several of the subjects. First, Eos’s string constant propagation is
defined as a conservative analysis that propagates constants across
all paths in the component regardless of whether they are feasible.
This means that the identification of a string variable’s values is
safe, but could include “extra” values that flow to it over infeasible
paths. A path-sensitive string propagation could resolve this issue,
but would require an expensive per-path analysis, which could affect
the scalability of our approach.

Second, some KLAX components contain a Map object that stores
all attributes of a message in a single variable. Whenever one of
these components publishes a message, it does not add individ-
ual attributes (e.g., via m.setAttribute(attrName)); instead, it
adds all attributes to the message at once (e.g., via m.setAllAt-
tributes(Map)). This feature appears to have been introduced
as a programming shortcut targeted specifically at KLAX because
some of its components must share copies of large data structures.
DRADEL, the other application implemented on the same MOM
platform (c2.fw [26]), does not use this feature and its results were
not affected by the feature.

Third, some attributes are conditionally added or extracted from
a message. A small number of instances of these “conditional
attributes” appeared in the two c2.fw applications, DRADEL and
KLAX. Eos can be extended to handle such conditional statements.
However, this could impact Eos’s scalability because, as the number
of variables in a condition increases linearly, the combination of
values those variables can take increases exponentially.

There are two reasons for the decrease in Eos’s recall for several
of the subjects. First, similar to the case discussed above, Eos misses
some CMTs in those KLAX components that return all message
attributes in a single Map object. Second, two KLAX components
also extract attributes from a Map object’s clone. Since Eos does
not track flow within container classes, such as Map objects, it does
not extract CMTs for these two components. This situation also
occurred in jms2009-PS. These resulting missing message types led
to missing intra-flow dependencies.

4.3 RQ2: Effectiveness for Maintenance
In the second research question, we address the effectiveness

of Eos for improving software maintenance. To measure this, we
incorporated Eos into a common software maintenance technique,
change impact analysis, and compared the accuracy of the impact
analysis against two baselines, one representing a “naïve” approach
and the second built around LSME. A change impact analysis iden-

373

Table 2: Results for Message Types, Intra-flow Dependencies, and Execution Time
Consumed Message Types Published Message Types Intra-flow Dependencies Time (ms)

Systems TP FP FN PR RE TP FP FN PR RE TP FP FN PR RE C S

KLAX 68 8 7 89.47% 90.67% 71 17 15 80.68% 82.56% 95 35 18 73.08% 84.07% 12 168
DRADEL 54 0 0 100.00% 100.00% 71 0 1 100.00% 98.61% 116 2 0 98.31% 100.00% 87 696

ERS 71 4 0 94.67% 100.00% 57 0 0 100.00% 100.00% 86 4 0 95.56% 100.00% 33 363
Stoxx 36 0 0 100.00% 100.00% 33 0 0 100.00% 100.00% 42 0 0 100.00% 100.00% 36 144

jms2009-PS 20 2 0 90.91% 100.00% 31 0 2 100.00% 93.94% 31 2 2 93.94% 93.94% 44 176
Spark 22 0 0 100.00% 100.00% 19 0 0 100.00% 100.00% 29 0 0 100.00% 100.00% 30 1770

tifies the set of entities in a system’s implementation (typically
statements) that can be affected by a specific change made to the
implementation [6, 13]. Change impact analysis is widely used in
tasks such as regression testing and bug fixing. In our case study,
we focused on impact analysis because the use of implicit invoca-
tion and ambiguous interfaces in DEB systems makes it difficult
to determine the scope and impact of changes made during main-
tenance [19]. All three techniques—based on Eos, LSME, and the
naïve approach—were used to identify the change impact sets for a
group of common DEB system maintenance tasks. The impact sets
were compared against each task’s “ground truth,” to compute each
approach’s precision and recall.

4.3.1 Case Study Setup
For the case study, we created a representative set of mainte-

nance tasks for three systems: KLAX, jms2009-PS, and Stoxx. We
selected these systems because they provide coverage for both mes-
sage types encountered in our subject systems (attribute-based and
nominal), and span three different underlying MOM platforms. Fur-
thermore, Eos’s analysis of the three systems exhibited different
accuracy, from Stoxx’s perfect precision and recall to varying in-
accuracies in the cases of KLAX and jms2009-PS (recall Section
4.2). The tasks represent different kinds of maintenance operations,
such as removing or changing (1) program statements, (2) message
dependencies, and (3) message types. To compute the “ground truth”
impact sets, two graduate students analyzed the systems’ source
code and documentation to determine the exact set of message de-
pendencies and statements that would be affected by each of the
maintenance tasks.

As mentioned above, we implemented three versions of the im-
pact analysis, the first based on Eos, the second on LSME, and the
third on a naïve approach. For all three, we tried to emulate the
typical operations a developer might perform in using the message
properties identified by the approaches. The Eos and LSME ap-
proaches each identify two impact sets, the first comprising message
types and dependencies, and the second comprising program state-
ments. The naïve approach only computes an impact set of program
statements.

The general approach of the Eos-based impact analysis is to
first generate the MFG by running Eos on a subject system. Then
keywords and text strings from the maintenance task are used to
identify an initial impact set of message types in the MFG. For
example, a maintenance task for jms2009-PS includes a description
involving the removal of “golden tickets” from the system. Thus, we
searched for the keyword “golden” over the MFG produced by Eos
and identified a message type, tgold , with an attribute “goldenTicket”.
Using this message type and its containing component as a starting
point, we then performed a reachability analysis on the MFG to
identify all dependent message types and intra-flow dependencies,
and also computed the program statements that corresponded to
them.

The LSME approach is similar, but we make one addition to the
technique to compensate for the fact that LSME does not identify
intra-flow dependencies: we assume that there is an intra-flow de-
pendency from each CMT to each PMT that is identified by LSME.
This addition allows the approach to build an MFG that can be used
for impact analysis. Without this addition, it would not have been
possible to use LSME for impact analysis.

The naïve approach uses keywords from the description of a main-
tenance task to identify program statements that may be modified
to complete the task. For example, if a maintenance task descrip-
tion includes the clause “increase the amount by which the score
increments,” then any program statements that contain text matching
the keywords “increase,” “amount,” “score,” or “increment” may
be included as part of the impact set. Since it is not possible to
use this information to build an MFG, define message types, or
identify dependencies, we could only use statement-based impact
sets generated by the naïve approach.

4.3.2 Discussion of Results
The results of the case study are shown in Figures 2 (message-

level) and 3 (statement-level). Each of the maintenance tasks is iden-
tified along the x axis (AVG depicts the average), while the y axis
shows the precision and recall achieved by the three approaches in
comparison to the ground truth. As noted above, the naïve approach
does not compute impact sets based on message dependencies, so
Figure 2 omits this approach. Also, for maintenance tasks involving
KLAX and jms2009-PS, the LSME-based approach could not cal-
culate a meaningful impact set. The reason for this is that LSME is
unable to identify the attributes of a message in an attribute-based
system. Therefore, we could only apply LSME on Stoxx, which
uses nominal message types.

For precision, the figures show that the Eos-based approach sig-
nificantly outperforms the LSME-based approach and the naïve
approach. At the message-level (Figure 2), the Eos-based approach
achieved an average precision of 34% as opposed to 11% for LSME.
As mentioned above, for six of the tasks involving attribute-based
messages, LSME’s precision was zero. At the statement-level (Fig-
ure 3), Eos achieved an average precision of 52% as opposed to
19% for LSME and 16% for the naïve approach. Eos’s precision is
superior to the naïve approach for all tasks, except for klax1, which
we explain below.

For recall, the figures show that, on average, Eos again signifi-
cantly outperforms LSME and and the naïve approach. For message-
level impact sets, Eos achieved an average recall of 78% as opposed
to LSME’s 31%. For statement-level impact sets, Eos achieved
an average recall of 88% as opposed to 26% for LSME, and 32%
for the naïve approach. Note that, for the tasks for which LSME
was able to provide an impact set, its recall was identical to the
Eos-based approach. Although this seems positive for LSME, the
primary reason behind this is that we assumed an intra-flow depen-
dency between each pair of CMTs and PMTs identified by LSME

374

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

klax1 klax2 klax3 jms1 jms2 jms3 stoxx1 stoxx2 stoxx3 AVG

EosnPrecision LSMEnPrecision

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

klax1 klax2 klax3 jms1 jms2 jms3 stoxx1 stoxx2 stoxx3 AVG

EosMRecall LSMEMRecall

Figure 2: Impact Analysis Results for Messages

(see Section 4.3.1); LSME is unable to identify these intra-flow
dependencies on its own.

Our results show that Eos obtains higher precision and recall than
the other approaches. For the software maintainer, this is a notable
benefit. By utilizing Eos for impact analysis, it is almost always pos-
sible to significantly reduce the number of spurious statements and
message properties that must be inspected after a change. Addition-
ally, the Eos-based approach ensures that a maintainer will be able
to find at least those impacted statements that the other approaches
can find. Overall, these results provide a strong indication that Eos
can be used to increase the effectiveness of a common software
maintenance technique.

The lone exception in our case study to the improved precision
results is klax1, where Eos has slightly lower precision (16.67%)
than the naïve approach (17.14%). This occurs because our Eos-
based impact analysis finds all types transitively dependent on the
initially identified impact set. In the case of this task, the additional
dependencies do not need to be modified. Specifically, klax1 only
requires modifications to dependencies within two components:
StatusComponent and StatusArtist. However, traversing the relevant
dependencies involving StatusComponent and StatusArtist in the
MFG returns dependencies on the TileArtist, TileRectArtist, and
LetterTileArtist components. By chance, the keywords used in the
naïve approach do not match any text in the code of those three
components, so the naïve approach does not return any results from
them.

This is an instance of a larger issue. Namely, the precision of
both the Eos-based and LSME-based approaches is lower overall
than would be achieved with more sophisticated impact analysis
techniques. Our impact analysis approach is somewhat simplistic
and uses reachability analysis to return all possible dependencies in
the MFG. Similarly, in some cases recall could be improved by a
more rigorous way of identifying the initial impact set, as a keyword
search may not identify all the components needed to obtain an
accurate impact set. For example, in the case of klax2, the keyword
“pause” in the description of the maintenance task indicated a mod-

0.00ï

10.00ï

20.00ï

30.00ï

40.00ï

50.00ï

60.00ï

70.00ï

80.00ï

90.00ï

100.00ï

klax1 klax2 klax3 jms1 jms2 jms3 stoxx1 stoxx2 stoxx3 AVG

EosnPrecision LSMEnPrecision NaïvenPrecision

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

klax1 klax2 klax3 jms1 jms2 jms3 stoxx1 stoxx2 stoxx3 AVG

EosMRecall LSMEMRecall NaïveMRecall

Figure 3: Impact Analysis Results for Program Statements

ification to the game’s pausing functionality. However, searching
for this keyword did not return any relevant message types because
the relevant functionality is in a component called Clock and in-
volves the words “suspend” and “clock” rather than “pause.” A
more sophisticated impact analysis could mitigate this issue, but the
development of such a technique is beyond the scope of this paper
and will be addressed in future work.

4.4 RQ3 - Execution Time
To address the third research question, we measured the execution

time of Eos. In our study we recorded the time needed to analyze
each component of each system, and also the time needed to analyze
the entire system. The results of this study are shown in the two
right-most columns of Table 2. For each subject system, the table
shows the average analysis time per component (C) and the total
analysis for the entire system (S). All time measurements are shown
in milliseconds. We excluded from both of these measurements the
time used by Soot to generate the call graphs and control flow graphs.
On average, the Soot analysis took about 65 seconds per system.
As Table 2 shows, Eos took from 144ms to 1,770ms to analyze the
systems, with an average of 550ms. If we include the Soot analysis
time, then, on average, Eos took less than 66 seconds to analyze
each system. Given this average running time, we conclude that the
execution time of Eos is reasonable and the analysis is sufficiently
fast to be used in practice.

5. RELATED WORK
Eos and the Message Flow Graphs (MFGs) it produces are sim-

ilar to certain code-based dependency analysis techniques and the
dependence graphs they produce. In particular, they both allow
the navigation of dependencies between software entities. Program
slicing [43] techniques compute sets of program statements that are
related through control or data dependencies [10, 41, 44]. These
techniques tend not to scale because they produce output that is
too large to be used for other analyses, such as impact analysis.
Furthermore, such techniques are unable to recover precise message

375

dependencies from DEB systems. In particular, they do not provide
a mechanism to capture the notions of message types, sources, and
sinks.

On the other end of the abstraction spectrum is the research on
analyzing event-based modeling approaches. Stafford and Wolf [38]
developed a dependence analysis technique for Rapide, a modeling
language that allows one to specify and simulate the behavior of an
event-based system. This approach accounts for inter- and intra-flow
dependencies. Baresi et al. [7] embed publish-subscribe constructs
into Bogor [35], an extensible model checker, to allow for auto-
matic verification of pub-sub architectures while coping with the
problem of state-space explosion. Neither of these two approaches
provides a mapping of the model to an implementation. Zhao in-
troduced slicing for the software architecture modeling language
Wright [45]. This technique is of limited use for DEB systems since
Wright explicitly captures several relationships between event-based
components that a programming language such as Java does not.
Millett and Teitelbaum introduced slicing of Promela models [27].
However, it is unclear how Promela’s channels could be mapped
to DEB systems that do not use channels, such as those of most
existing MOM systems [29].

Halfond and Orso presented an approach that statically recovers
implicit input interfaces of web applications and then groups the
identified inputs that could be part of the same interface by analyzing
data-flow paths [20]. [21] extends this work by recovering indirect
interface invocations. While instructive, this approach cannot be
used for recovering the invoked interfaces of a DEB system because
DEB components neither encode invocations into one data object
nor return their invoked interfaces to a specific client.

Purandare et al. [33] developed a program analysis technique
that determines the conditions under which a component publishes
a message. The technique is targeted at the Robotics Operating
System (ROS) [2], which provides MOM-based publish-subscribe
functionality. The technique reports the conditions under which a
message source interface is called, which methods may transitively
invoke that interface, and the specific topic to which a component
may publish a message. However, unlike Eos, this technique does
not determine the attributes that constitute a message, distinguish
between CMTs and PMTs, or determine which messages may be
published due to the consumption of another message.

Jayaram and Eugster developed three static analysis techniques
targeted at improving the performance of DEB systems [23] imple-
mented in EventJava [18]. EventJava is an extension to Java that
provides support for event-based interaction. A system written in
EventJava does not deal with the problem of ambiguous interfaces:
the event (i.e., message) types in EventJava are explicitly defined
via special “event methods”, where the attributes of an event are
specified as method arguments. While useful for constructing DEB
applications, such capabilities are not typically found in existing
MOMs. The proposed event causality analysis in [23] is a combina-
tion of static and dynamic analysis that relies on the event methods
and EventJava’s runtime framework to obtain dependencies between
events. While a potentially useful complement to the analysis pro-
vided by Eos, adopting the static portion of EventJava’s analysis
in our approach would require that we overcome two difficulties.
First, programmers would have to indicate which event types need
to be causally ordered to ensure safety. Second, programmers need
to explicitly indicate causally-independent events to avoid a high-
overhead pessimistic analysis.

Lexical source model extraction (LSME) is an approach for ex-

tracting information from source code [30]. Of particular relevance
is a case study in which LSME was used to extract inter-flow de-
pendencies from the message-oriented Field programming environ-
ment [34]. However, LSME was unable to ensure that its results
included all message sources and sinks. Additionally, LSME did
not analyze intra-flow dependencies, forcing an engineer to assume
that, within a component, each published message depends on each
consumed message. Our analysis of LSME in the context of our pre-
vious work [32] quantified these shortcomings in terms of LSME’s
decreased precision and recall when applied to five DEB systems
used in our evaluation in Section 4.

Our previous work, Helios [32], directly inspired the work in this
paper. Helios also computes message-flow dependencies of DEB
components. Our quantitative evaluation demonstrated that such an
approach can exhibit very good precision and recall. However, He-
lios supports only DEB applications that use nominal message types,
i.e., message types that are explicitly defined in the underlying pro-
gramming language. Furthermore, Helios mandates that dispatching
of messages be localized within the method that implements the
message sink (e.g., the consume method in Figure 1). While these
two constraints simplified the analysis Helios had to perform as com-
pared to Eos, they also restricted Helios’s applicability to a small
class of existing DEB systems, and in some cases required partial
re-implementation of such systems [32] to fit Helios’s assumptions.

6. CONCLUSION
The rich body of work targeted at analyzing the dependencies in

traditional software systems provides little benefit when applied to
DEB systems. The rare techniques that are directly applicable to
DEB systems are either (1) generic tools whose accuracy is inade-
quate or (2) specialized approaches that make significant limiting
assumptions. Eos has been developed to eliminate both of these
shortcomings. Its analysis algorithms directly capture the character-
istics of modern DEB systems and their underlying MOM platforms.
This is reflected in the empirical data: in our evaluations, Eos ex-
hibited an average precision and recall higher than 90%, while in a
large number of cases it achieved perfect scores. Additionally, Eos’s
runtime performance gives us confidence that it is likely to scale to
very large DEB systems. Finally, a preliminary case study suggests
that Eos can be used effectively in aiding change impact analysis, a
common software maintenance activity.

There are a number of avenues of future work. We have already
begun pursuing some (e.g., assessing the suitability of Eos for sys-
tem maintenance). Several additional issues were highlighted by
our evaluation results. Some of them (e.g., conditional attributes)
were due to less common ways of message storage, access, retrieval,
and propagation, which we had not considered. Others (e.g., path-
insensitive string propagation) were a result of a deliberate design
choice. In either case, enhancements to Eos to address these issues
will require a careful analysis of trade-offs between the cost in ana-
lytic complexity and runtime performance vs. the benefit in added
precision and recall.

7. ACKNOWLEDGMENTS
The authors wish to thank Kihoon Jeoung for his assistance with

the analysis of the Spark system. This work has been supported by
the National Science Foundation under award numbers 1117593,
1218115, and 1321141.

376

8. REFERENCES
[1] mfa:start [USC Softarch Wiki]. http:

//softarch.usc.edu/wiki/doku.php?id=mfa:start,
2012.

[2] Documentation - ROS Wiki, 2013.
[3] Ignite Realtime: Smack API, 2013.
[4] Ignite Realtime: Spark IM Client, 2013.
[5] A. Aho et al. Compilers, Principles, Techniques, and Tools.

Addison-Wesley, 1986.
[6] R. Arnold and S. Bohner. Impact Analysis - Towards a

Framework for Comparison. In the International Conference
on Software Maintenance, 1993.

[7] L. Baresi et al. On Accurate Automatic Verification of
Publish-Subscribe Architectures. In ICSE, 2007.

[8] K. Bierhoff. API Protocol Compliance in Object-Oriented
Software. PhD thesis, School of Computer Science, Carnegie
Mellon University, 2009.

[9] K. Bierhoff and J. Aldrich. PLURAL: Checking Protocol
Compliance Under Aliasing. In ICSE Companion, 2008.

[10] D. Binkley and M. Harman. A Survey of Empirical Results on
Program Slicing. Advances in Computers: Advances in
Software Engineering, 2004.

[11] F. Biscotti et al. Market Share: AIM and Portal Software,
Worldwide, 2009. Gartner Market Research Report, April
2010.

[12] F. Biscotti and A. Raina. Market Share Analysis: Application
Infrastructure and Middleware Software, Worldwide, 2011.
Gartner Market Research Report, April 2012.

[13] S. Bohner and R. Arnold. Software Change Impact Analysis.
Wiley-IEEE Computer Society Pr, 1996.

[14] C. Clifton et al. MultiJava: Design Rationale, Compiler
Implementation, and Applications. ACM Transactions on
Programming Languages and Systems (TOPLAS), 2006.

[15] J. Correira and F. Biscotti. Market Share: AIM and Portal
Software, Worldwide, 2005. Gartner Market Research Report,
2006.

[16] G. Cugola et al. The JEDI Event-Based Infrastructure and Its
Application to the Development of the OPSS WFMS. IEEE
TSE, 2001.

[17] P. Eugster et al. The Many Faces of Publish/Subscribe. ACM
Computing Surveys (CSUR), 2003.

[18] P. Eugster and K. Jayaram. EventJava: An Extension of Java
for Event Correlation. In European Conference on
Object-Oriented Programming. Springer, 2009.

[19] J. Garcia et al. Toward a Catalogue of Architectural Bad
Smells. In International Conference on Quality of Software
Architectures, 2009.

[20] W. Halfond and A. Orso. Improving Test Case Generation for
Web Applications Using Automated Interface Discovery. In
ESEC/FSE, 2007.

[21] W. Halfond and A. Orso. Automated Identification of
Parameter Mismatches in Web Applications. In FSE, 2008.

[22] M. Hauswirth and M. Jazayeri. A Component and
Communication Model for Push Systems. In ESEC/FSE.
Springer, 1999.

[23] K. Jayaram and P. Eugster. Program Analysis for Event-Based
Distributed Systems. In International Conference on

Distributed Event-based Systems, 2011.
[24] T. D. LaToza and B. A. Myers. Developers Ask Reachability

Questions. In ICSE, 2010.
[25] S. Malek et al. A Style-Aware Architectural Middleware for

Resource-Constrained, Distributed Systems. IEEE TSE, 2005.
[26] N. Medvidovic et al. The Role of Middleware in

Architecture-Based Software Development. Int. J. of Softw.
Eng. and Knowl. Eng., 2003.

[27] L. Millett and T. Teitelbaum. Issues in Slicing PROMELA and
Its Applications to Model Checking, Protocol Understanding,
and Simulation. International Journal on Software Tools for
Technology Transfer, 2000.

[28] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Darmstadt University of Technology,
2002.

[29] G. Mühl et al. Distributed Event-Based Systems.
Springer-Verlag New York, Inc., 2006.

[30] G. C. Murphy and D. Notkin. Lightweight Lexical Source
Model Extraction. ACM TOSEM, 1996.

[31] D. Popescu. Dependence Analysis for Distributed
Event-Based Systems. PhD thesis, University of Southern
California, 2012.

[32] D. Popescu et al. Impact Analysis for Distributed Event-Based
Systems. In International Conference on Distributed
Event-Based Systems, 2012.

[33] R. Purandare et al. Extracting Conditional Component
Dependence for Distributed Robotic Systems. In the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012.

[34] S. Reiss. Connecting Tools Using Message Passing in the
Field Environment. IEEE Software, 1990.

[35] Robby et al. Bogor: An Extensible and Highly-Modular
Software Model Checking Framework. In ESEC/FSE, 2003.

[36] K. Sachs et al. Performance Evaluation of Message-Oriented
Middleware Using the SPECjms2007 Benchmark.
Performance Evaluation, 2009.

[37] K. Sachs et al. Benchmarking Publish/Subscribe-Based
Messaging Systems. In Proc. BenchmarX, 2010.

[38] J. Stafford and A. Wolf. Architecture-Level Dependence
Analysis for Software Systems. Int. J. of Softw. Eng. and
Knowl. Eng., 2001.

[39] R. Taylor et al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE TSE, 1996.

[40] R. Taylor et al. Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons, 2008.

[41] F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 1995.

[42] R. Vallée-Rai et al. Soot - a Java Bytecode Optimization
Framework. In Conference of the Centre for Advanced Studies
on Collaborative research, 1999.

[43] M. Weiser. Program slicing. In ICSE, 1981.
[44] B. Xu et al. A Brief Survey of Program Slicing. ACM

SIGSOFT Software Engineering Notes, 2005.
[45] J. Zhao et al. Change Impact Analysis to Support

Architectural Evolution. J. Software Maintenance and
Evolution Research and Practice, 2002.

377

