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Abstract—The architectures of software systems tend to drift
or erode as they are maintained and evolved. These systems
often develop architectural decay instances, which are instances
of design decisions that negatively impact a system’s lifecycle
properties and are the analog to code-level decay instances that
are potential targets for refactoring. While code-level decay
instances are based on source-level constructs, architectural
decay instances are based on higher levels of abstractions, such
as components and connectors, and related concepts, such as
concerns. Unlike code-level decay instances, architectural decay
usually has more significant consequences. Not being able to
detect or address architectural decay in time incurs architecture
debt that may result in a higher penalty in terms of quality
and maintainability (interest) over time. To facilitate architecture
debt detection, in this paper, we demonstrate the possibility of
transforming architectural models and concerns into an extended
augmented constraint network (EACN), which can uniformly
model the constraints among design decisions and environmental
conditions. From an ACN, a pairwise-dependency relation (PWDR)
can be derived, which, in turn, can be used to automatically and
uniformly detect architectural decay instances.

I. INTRODUCTION

It has been widely documented that engineers tend to make
decisions about system changes without careful consideration
of the impact of those changes on the system’s architecture. As
a result, the architecture of a software system will eventually
deviate from the original intent, resulting in architectural drift
and erosion [20]. In turn, this makes new modifications to
a system increasingly time consuming and costly, while the
system’s reliability decreases. Such a system incurs a technical
debt [5], where short-term compromises lead to significant
long-term problems in terms of reduced ability of fixing bugs
or adding new features.

A system suffering from architectural drift or erosion will
eventually develop a number of decay instances (sometimes
referred to as “bad smells”), many of which will be at the level
of the system’s architecture. For example, a system component
may lose its conceptual coherence (becoming a “jack of many
trades”) or it may interact with other components using multi-
ple, disparate software connectors [16]. Such decay instances
are instances of architectural design decisions that negatively
impact system lifecycle properties, such as understandability,
testability, extensibility, and reusability. They are architecture-
level analogs to the better known code decay instances [10]

and are thus targets for restructuring. These architecture decay
instances usually have more significant consequences, and
we consider them as architecture debt that deserves special
attention.

Unlike code decay instances, which have been widely
studied, the nature of architectural decay instances is not
nearly as well defined and understood. While the two types
of decay instances may occur simultaneously, the architectural
decay instances are likely to have a more significant impact
on the system, yet they may not manifest themselves in (a
corresponding set of) code decay instances. Relying on our
experience in the area of software systems architecture, on
published literature, and on available systems (e.g., open-
source), we recently proposed a categorization of architectural
decay instances [13], such as component envy, connector envy,
and scattered functionality, which are based on standard archi-
tecture building blocks: components, connectors, interfaces,
and configurations.

Although these definitions are counterparts of code decay
instances, identifying those architectural decay instances in a
system is more challenging. Unlike code decay instances that
are defined based on source code constructs, and thus can be
detected against source code, the definitions and thus detection
of architectural decay instances rely on a higher level of
abstraction. For example, in order to detect component envy in
source code, one has to determine which source-level element
belongs to which components. Moreover, some architectural
decay-instance definitions involve concerns, a concept beyond
the basic architecture definitions. For example, the architec-
ture decay instance, Scattered Functionality, involves multiple
components that are responsible for realizing the same high-
level concern and, some of those components are responsible
for orthogonal concerns. Without a unified representations
of components, connectors, and concerns, it is difficult to
automatically detect these decay instances.

Based on the perspective that a software system’s archi-
tecture is the set of principal design decisions governing a
system [20], in this paper, we propose to transform architec-
tural models and related concepts, such as concerns, into an
augmented constraint network (ACN) [7], which was designed
to uniformly model the constraints among both design deci-
sions and environmental conditions using a constraint network.
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In this paper, we show how the original ACN model can
be extended to model the relation between components and
concerns. We call the extended ACN an EACN.

We show that it is possible to map components, connectors,
interfaces and concerns, as well as their relations, into an
EACN. Using this mapping, it becomes possible to model all
the defined architectural decay instances using EACN concept-
s, such as pairwise-dependency relations (PWDRs) that can
be derived from an EACN. The implication of the mapping
is that, once we represent all the architectural elements as
design decisions and their constraints, these architectural decay
instances can be modeled as patterns in the dependency model
created by the constraint network, which, in turn, can be
automatically and uniformly detected.

II. DEFINITIONS AND BACKGROUND

In this section, we provide the definition of basic architec-
tural concepts and ACN modeling, as the background of our
work.

A. Architectural Concept for Decay-Instance Relevant View

Our definitions of architectural concepts are not intended to
be complete; they are restricted to those architectural concepts
that will be useful for identifying decay instances.

A software system’s architecture is a graph G whose vertices
are “bricks” (software components and connectors) and whose
topology represents the interconnections among those bricks.
In order to represent and detect architectural decay instances,
we model a system’s architecture as a tuple comprising G,
the nonempty set of “words” W that are used to “describe”
(i.e., implement) the system modeled by the architecture, and
the nonempty set of “topics” T addressed by the system;
each topic is defined as a probability distribution over the
system’s words. By examining the words that have the highest
probabilities in a topic, the meaning of that topic can be
discerned. In this way, a topic can serve as a representation of
a concern addressed by a software system. In other words, the
set of topics T is a representation of the system’s concerns.

A = (G,W, T )
G = (B ,L)
W = {wi | i ∈ N}
T = {zi | i ∈ N}
z = Pd(W )

A brick B can be either simple or composite. A composite
brick CB is an architecture in its own right, allowing for
multiple levels of architectural abstraction. We omit the formal
definition of CB for brevity; the definition is essentially the
same as that for architecture A above. Each simple brick SB
is a tuple comprising the brick’s internal state S, its interface
I, set of operations O, the map M that relates the operations
and the interfaces through which they are exported, and the
probability distribution θ over the system’s topics T.

B = SB ∪ CB
SB = {bi | i ∈ N}
b = (S, I,O,M, θb)

A brick’s state S is defined as a set of variables var, where
each variable is a tuple comprising a name n (which must be
one of the words in W), a type t, and a value val.

S= {vi | i ∈ N}
v = (n, t, val)
n ⊆W

A brick’s interface consists of a set of interface elements ie,
each of which is a tuple comprising a name ni (which must
be one of the words in W), a possibly empty set of parameters
P , and a possibly empty set of return variables RV .

I = {iei | i ∈ N}
ie = (ni, P,RV )
ni ⊆W
P = {vj | j ∈ N0}
RV = {vk | k ∈ N0}

A brick’s operation op is a tuple comprising a set V O
of variables that comprise the operation’s state, an algorithm
alg that realizes the operation, a probability distribution θop
over the operation’s topics (called “document-topic distribu-
tion” for short) and a function op type. Top are the set of
topics over which θop is distributed, i.e., Top represents the
operation’s concerns. op type determines whether a topic in
Top is application-specific (pertaining to the system’s “business
logic”) or application-independent (pertaining to the bricks’
interaction needs).

O = {opi | i ∈ N}
op = (V O, alg, θop, op type)
V O = {vl | l ∈ N0}
θop = Pd(Top)
Top = {zj | j ∈ N}
op type : Top → SP
SP = {spec, indep}

The mapping relation M relates a brick’s operations with
the interface elements through which they are accessed. The
tuples in the relation are restricted such that every interface
is paired with an operation in the tuple if their types match.
Note that multiple operations can be part of different tuples
comprising the same interface.

M = {(iek, opj) | ∀iek ∈ I | ∃opj ∈ O | ∀vm ∈ iek.P ∪
iek.RV | ∃vh ∈ opj .V O | vh.t = vm.t}

The document-topic distribution θb is a probability distri-
bution over topics T . θb represents the extent to which the
concerns represented by topics T are present within the brick
b.

θb = Pd(T )

A link l is a tuple comprising a source interface src and a
destination interface dst. Links are the channels over which
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components and connectors transfer data and control over their
interfaces.

L = {li | i ∈ N0}
l = (src, dst)
src, dst ∈ I

A component c is a brick whose interfaces are al-
l application-specific and whose topics are primarily
application-specific. Interfaces are considered application-
specific if the words naming the interface are application-
specific. In particular, each word of the system is classified
as either application-independent or application-specific. A
brick is considered primarily application-specific if, for each
topic that occurs in the component with a probability above
a threshold th zc, that topic is application-specific. th zc is
specified by an architect.

C = {ci | ci ∈ B ∧ i ∈ N ∧ ci.I = I ∧ ∀zc ∈ T | P (zc | ci) >
th zc ⇒ z type(zc) = spec}
I = {iaj | j ∈ N ∧ iaj ∈ I ∧ iaj .ni ⊂ AS}
AS = {wj | j ∈ N ∧ wj ∈W ∧ w type(wj) = spec}
w type :W → SP
0 ≤ th zc ≤ 1
z type : T → SP

A connector n is a brick whose interfaces are all
application-independent. Interfaces are considered application-
independent if the words naming the interface are application-
independent. A brick is considered primarily application-
independent if, for each topic that occurs in the connector with
a probability above a threshold th zn, that topic is application-
independent. th zn is specified by an architect. TPn(n) is a
relation indicating the types a connector n may be.

N = {ni | ni ∈ B ∧ i ∈ N ∧ ni.I = D ∧ ∀zn ∈ T | P (zn | ci)
> th zn ⇒ z type(zn) = indep}
D = {idj | j ∈ N ∧ idj ∈ I ∧ idj .ni ⊂ AD}
AD = {wk | k ∈ N ∧ wk ∈W ∧ w type(wk) = indep}
0 ≤ th zn ≤ 1
TPn(n) = {tyi | i ∈ N ∧ n ∈ N ∧ tyi ∈ {proc call, event,
stream, distributor, data access, adaptor, arbitrator}

B. Augmented Constraint Network

Our previous work on augmented constraint networks (AC-
N) [8], [9], [22] makes it possible to capture both architec-
tural decisions and concerns in a formal, unified way. An
ACN consists of a constraint network (CN ), a dominance
relation (DR), and a cluster set (CS). That is: ACN =
〈CN,DR,CS〉. The core computation model of an ACN is
the CN [14]. A CN consists of a set of variables, V , with
their domains, D, and the constraints among these variables,
C: CN = 〈V,D,C〉. The variables can model either design
dimensions, such as classes or algorithms, or relevant concern-
s, such as business rules or features. The domain of a variable

comprises a set of values, each representing a possible choice
within that dimension. Figure 1 shows a CN modeling the
design of a simplified graph library, which has three variables
(line 1-3), each having a domain with two values, and three
constraints (line 4-7). The first variable, density, models graph
density required by the user. ds and alg model data structure
and algorithm choices. As an example, line 4 is a constraint
modeling the fact that the decision to use an adjacency matrix
data structure assumes that the client needs dense graphs.

1 : density : (dense, sparse);
2 : ds : (matrix, list);
3 : alg : (matrix alg, list alg);
4 : ds = matrix => density = dense;
5 : ds = list => density = sparse;
6 : alg = array alg => ds = array;
7 : alg = list alg => ds = list;

Fig. 1. The Constraint Network for a Simple Graph Library

The dominance relation DR ⊆ V × V , that augments a
CN, models an asymmetric relation among decisions, formal-
izing the concept of design rule [3]. For example, the pair
(ds, density) belongs to the DR that augments the sample
CN, indicating that the decisions about which data structure
to use cannot influence the client’s requirement on the density
of graphs to be used.

Another augmentation, CS, models the concept of module,
which is another essential concept in software design that a
CN does not lend itself to modeling: different stakeholders can
view the same design in different ways. For example: we can
cluster all connectors into one module, and all components into
another module, with each component as a sub-module; or, we
can cluster all concern-related elements into a concern module,
and all GUI-related elements into a GUI module. We model
the multiple modularization candidates using a cluster set
(CS) that consists of a set of clusterings. Each clustering
expresses a priori aggregation of subsets of variables into
candidate modules. The CS of an ACN contains multiple
clusterings, reflecting different stakeholders’ views of the
design.

Maintaining satisfiability through minimal perturbation of
an ACN forms the concept of pairwise dependence relation
(PWDR) [9]: PWDR ⊆ V ×V . If (u, v) ∈ PWDR, meaning
that v depends on u: when u is changed and the consistency
of the constraint network is broken, v must be changed in
some minimal way to restore the consistency to the constraint
network. Given a PWDR relation derived from an ACN and
a clustering of it, a design structure matrix (DSM) can be
automatically derived.

A DSM is a square matrix in which columns and rows are
labeled with the same set of design variables in the same order.
Each clustering of an ACN is an ordered tree structure that
can be used to determine the DSM variable order. A marked
cell of the DSM can represent the dependency relation among
the variables. If (u, v) ∈ PWDR, then the cell in row v,
column u will be marked. The blocks along the diagonal can
be used to model modules within a clustering. For example,
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Figure 3 shows a DSM that visualizes a clustering with two
top-level modules, the first module has 10 variables, and the
second module has 17 variables that are further clustered into
15 sub-modules. In the next section, we introduce how this
ACN model can be extended to capture architectural entities,
concerns and decay instances.

III. THE ACN MAPPING OF ARCHITECTURAL MODELS

Both architectural elements and concerns can be uniformly
represented as variables of an ACN. The dependencies among
architectural elements can be formalized as logical constraints,
as we did in our prior work [21], [2], [17], [6]. We propose
to use a new data structure, called CE, to represent the
relation between architectural elements and their concerns.
CE is defined as a tuple: 〈crn, ele, p〉, where crn models a
set of concerns, ele models architectural building blocks, and
p models the probability that ele is involved in crn.

For example, if we identified that the
ResourceManagement component is involved in the
PersonnelResources concern with a probability of 48%, then
〈PersonnelResources,ResourceManagement , 0.48〉 would
be a member of CE. As a result, the extended ACN, which
we call EACN , is defined as: EACN = 〈CN,DR,CS,CE〉.

Next, we introduce the mapping between the architectural
model and the ACN model, as well as how the mapping can
be used to detect architectural decay instances, which can
be visualized in a DSM. For the sake of space, we restrict
our discussion to four of the architectural decay instances we
have defined. After that, we use an example to show how
architectural decay instances can be visualized base on these
mappings.

A. Architecture Model and Decay-Instance Mappings

First of all, we model each element in an architecture model
using a design variable. For example, we model a component
using a variable c, model an operation of this component
as c.op, and model one of its interfaces c.i. Similarly, we
can model a concern as crn. Without knowing the concrete
decisions of these variables, following prior work on ACN
modeling [7], we can generally model that they all have a
domain with at least two values: (orig, other), where orig
means a current decision and other means some other decision
that is different from the current one.

We also generally model the relation between these vari-
ables using assumption relations expressed as logical con-
straints. For example, either an operation op uses or implement
an interface i, the decision of op has to make assumptions on
i. Accordingly, we can model this assumption relation as:
op = orig =⇒ i = orig. Based on this constraint, our tools
will compute that (op, i) is a pair that belongs to PWDR.

If concerns and components are reverse-engineered from
source code, then we can use the CE relation in the extended
EACN model to express this relation. For example, if a
component c is related to concern crn with a probability
of 67%, then we model this as a tuple (crn, c, 67%), which
belong to the CE relation of the EACN.

Based on this mapping, we now introduce how these ar-
chitectural decay instances can be mapped as patterns within
these ACN data structures, so that they can be detected
automatically.

Connector Envy. Components with Connector Envy en-
compass extensive interaction-related functionality that should
be delegated to a connector. Formally, a component c ∈
COMP , where COMP = C, suffers from Connector Envy
in the following cases:

• Connector Interface Implementation. In this case, a
component exposes an application-independent interface:
Interface ia of component c exhibits this decay instance
if:

∃op ∈ c.O | ia ∈ c.I ∧ (ia, op) ∈ c.M ∧ op type(op) =
indep.

In ACN, the operation and interface can be modeled
as op and ia. To distinguish application-specific and
application-independent operations, we can create a
clustering where these two types of operations are
separated into two sets app spec and app indep. Now
this decay instance can be defined as: there exists
interface ia and the operation op of a component c. If
op depends on ia, that is, the pair (op, ia) belongs to
PWDR, and op is in the app indep cluster, then the
Connector Envy decay instance occurs. Formally:

∃ia ∈ c.I ∧ ∃op ∈ c.O | (op, ia) ∈ PWDR ∧
op type(op) ∈ app indep

• Unacceptably High Connector Concern. In this case, a
single application-independent concern as represented
by a topic is too high as specified through a threshold
selected by an architect. A component c ∈ COMP
exhibits this decay instance case if:

∃z ∈ T | z type(z) = indep ∧ P (z | c) > th zn.

Suppose there is a clustering in the ACN cluster
set, CS, where application-independent concerns and
application-dependent concerns are separated into two
sets, crn indep and crn dep, then this decay instance
can be expressed as follows: there exists concern z and
a component c, where z ∈ crn indep. If there is a tuple
(z, c, pr) in the CE of the EACN, where pr > th zn,
then this smell occurs. Formally:

∃z ∈ T ∧ ∃c ∈ COMP | (z, c, pr) ∈ CE ∧ z ∈
crn indep ∧ pr > th zn

• Data Flow Interface Envy. For this decay instance, a
component’s interface simply passes the parameters of
the interface as the return value of some other interface.
Component interfaces i1, i2 ∈ c.I exhibit this decay
instance if:
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∃pi ∈ i1.P,∃rvi ∈ i2.RV | i1 6= i2 ∧ pi = rvi

In ACN, this decay instance can be modeled as follows:
There exists interfaces i1, i2 of a component. If for any
pairs of i1’s parameter (modeled using variable c.1.p)
and i2’s return value (modeled using variable c.i2.rv),
c.i2.rv depends on c.i1.p, then the Connector Envy
decay instance occurs. Formally:

∃c ∈ COMP ∧ ∃i1 ∈ c.I ∧ ∃i2 ∈ c.I − i1 |
(c.i2.rv, c.i1.p) ∈ PWDR

Scattered Parasitic Functionality. Scattered Parasitic
Functionality describes a system where multiple components
are responsible for realizing the same high-level concern and,
additionally, some of those components are responsible for
orthogonal concerns. This decay instance violates the principle
of separation of concerns in two ways. First, this decay
instance scatters a single concern across multiple components.
Secondly, at least one component addresses multiple orthog-
onal concerns. In other words, the scattered concern infects a
component with another orthogonal concern, akin to a parasite.

Formally, components c1, c2 ∈ COMP are part of the
Scattered Parasitic Functionality decay instance if:

∃z1 ∈ T | P (z1 | c1) > th1 ∧ ∃z2 ∈ T | P (z2 | c2) >
th1 ∧ z1 = z2 ∧ ∃z3 ∈ T | P (z3 | c2) > th2 ∧ z1 6= z3,
where th1, th2 are proportions such that 0 ≤ th1 ≤ 1 and
0 ≤ th2 ≤ 1. th1 and th2 specify the acceptable degree of
scattering per topic.

In EACN, this decay instance can be expressed as follows:
there exists concerns z1, z2, z3, and components c1, c2. If the
CE of the EACN contains the following tuples (z1, c1, p1),
(z2, c2, p2) and (z3, c2, p3), where z1 = z2 and z1 6= z3, and
p1 > th1, p2 > th1, and p3 > th2, then the Scattered Parasite
Functionality decay instance occurs. Formally:

∃z1, z2, z3 ∈ T ∧ ∃c1, c2 ∈ COMP | (z1, c1, p1) ∈ CE ∧
(z2, c2, p2) ∈ CE ∧ (z3, c2, p3) ∈ CE ∧ p1 > th1 ∧ p2 >
th1 ∧ p3 > th2 ∧ z1 = z2 ∧ z1 6= z3

Extraneous Adjacent Connectors. The Extraneous
Adjacent Connector decay instance occurs when two
connectors of different types are used to link a pair of
components. Components c1 , c2 ∈ COMP and connectors
n1 ,n2 ∈ CONN , where CONN = N , are involved in an
instance of an Extraneous Adjacent Connector decay instance
if:

connected(c1 ,n1 ) ∧ connected(n1 , c2 ) ∧
connected(c1 ,n2 ) ∧ connected(n2 , c2 ) ∧
TPn(n1) 6= TPn(n2)

In EACN, this decay instance can be modeled as follows:
there exists a pair of components c1 and c2, and two

connectors, n1 and n2, of different types. If both components
depend on both connectors, then the Extraneous Adjacent
Connector decay instance occurs. Formally:

∃c1, c2 ∈ COMP ∧ ∃n1, n2 ∈ CONN | (c1, n1) ∈
PWDR∧ (c2, n1) ∈ PWDR∧ (c1, n2) ∈ PWDR∧ (c2, n2) ∈
PWDR ∧ TPn(n1) 6= TPn(n2)

Brick Concern Overload. Brick Concern Overload is
inspired by Stal’s architectural decay instance called Com-
ponent Responsibility Overload [18]. While Stal uses the
word “responsibility,” we use the synonymous word “concern.”
Furthermore, instead of just letting the decay instance apply
to components, we allow it to apply to both components and
connectors, i.e., bricks.

Formally, a brick has concern overload if it handles an
excessive number of concerns. A brick b ∈ B suffers from
this decay instance if:
|{zj | j ∈ N ∧ P (zj |b) > th zb}| > tht, where th zb is the
threshold indicating that the topic is high for the brick and
0 ≤ th zb ≤ 1. tht is a threshold indicating the acceptable
number of concerns per brick and tht ∈ N.

Using EACN, this decay instance can be expressed as
follows: there exists a brick b and concerns zi, where i ∈ N.
There are multiple tuples in the CE of the ACN that relates b
with different concerns, with probabilities greater than th zb.
If the number of such tuples is greater than tht then this decay
instance occurs. Formally:

∃b ∈ B ∧ i ∈ N ∧ ∃zi ∈ T ∧ ∃p > th zb such that BC =
{(zi, b, p) ∈ CE} ∧ |BC | > tht

B. An Example

As shown in the previous section, all the architectural decay
instances can be modeled using PDWRs, which in turn, can
be visualized in a DSM. To illustrate how a DSM can be
used to visualize architectural decay instances, we will use an
application for distributed deployment of personnel in opera-
tions involving emergencies, such as natural disasters, search-
and-rescue efforts, and military crises. The system is called
the Emergency Response System (ERS) and was introduced
in [15]. In ERS, A small number of laptop computers oversee
an operation and primarily interact with a set of higher-end
handhelds. These handhelds are in charge of specific segments
of the operation and interact with a large number of lower-end
handhelds, which are used by first-line responders.

ERS is designed using the C2 architectural style [19] and
implemented in Java using the PrismMW middleware platfor-
m [15]. The C2 style organizes components and connectors
in a layered fashion. Communication between them occurs
solely through message passing. Therefore, the messages (also
referred to as events) are the major data elements of ERS.

A simple instantiation of the ERS architecture is depicted
in Figure 2. ERS’s Map component maintains a model of
the system’s overall resources: regions of space, personnel,
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Fig. 2. A view of ERS’s architecture deployed on three hardware hosts. White rectangles are the system’s components and gray rectangles are the connectors.

emergency vehicles, and buildings. These resources are per-
manently stored inside the Repository. StrategyAnalyzerA-
gent, DeploymentAdvisor, and SimulationAgent components,
respectively, analyze the deployments of personnel with re-
spect to the areas that require emergency response, suggest
deployments of personnel based on their availability as well
as the positions of buildings and emergency vehicles, and
incrementally simulate the outcome of deploying personnel
to different areas with different emergency requirements. S-
trategyAnalysisKB and SAKBUI components store the strategy
rules and provide the user interface for changing these rules,
respectively. ResourceManager, CommanderManager, Person-
nelManager, and ResourceMonitor components enable the
allocation and transfer of resources and periodically update the
state of resources. Weather and WeatherAnalyzer components
provide weather information and analyze the effects of weather
conditions. Finally, the RenderingAgents provides the user
interface of the application.

Figure 3 shows a DSM for the ERS system. The first
block contains the 10 concerns recovered from the ERS
source code. The next block contains the system’s architectural
building blocks. The number in a cell is the probability of
the component in that row being involved in the concern in
that column. These numbers are automatically calculated using
Latent Dirichlet Allocation (LDA) [4], which is a statistical
language model used in information retrieval. We automate
distinguishing between application-specific and application-
independent concerns using a machine learning-based tech-
nique described in [12].

In the ERS example, all four decay instances we have
identified to date can be visualized in the DSM, which can
be automatically derived from an EACN: the cells with the
dark background and white font represent the dependen-
cies that indicate architectural decay instances. For example,
the SimulationAgent and the DeploymentAdvisor components
both depend on ResourceMonitor and both components de-
pend on ComponentInterface, which in turn, depends on

ConnectorInterface, showing the symptoms of the extraneous
adjacent connector decay instance, according to its formal
definition. The dependencies of the SimulationAgent and
DeploymentAdvisor on the ResourceMonitor are caused by
the fact that the SimulationAgent and DeploymentAdvisor
directly call the event handle method of ResourceMonitor.
The DSM also shows that all components depend on a shared
DataInterface, i.e., Event , to send or receive data, exhibiting
the ambiguous interface symptom since that DataInterface is
a key part of the ambiguous interface provided by PrismMW.
The ResourceMonitor and StrategyAnalyzerAgent depend on
both ComponentInterface and ConnectorInterface, exhibiting
the connector envy decay instance since the dependencies on
these interfaces imply that these two components implement
functionality of both components and connectors.

The DSM also shows that concerns modeled by variables
3, 6, 7, and 9 have a strong scattered functionality decay
instance because the number of components they involve
is larger than three, which is the median number of com-
ponents involved in a concern in the ERS system and is
used as a threshold in this case. Thresholds can be deter-
mined manually or automatically by using statistics (such
as the median, mean plus standard deviation, etc.). Con-
cern 3 is about Event and Message Management . Con-
cern 6 is about Weather . Concern 7 is about functional-
ity of the Commander and Agents . Concern 9 is about
Usage of Shared Data Structures . After further inspection,
it turns out that concern 3 has the scattered functionality
decay instance because all components communicate through
messages—an example where the decay instance is not nec-
essarily a problem with the system’s design. Concern 9 also
is a strong decay instance, but in this case it is an indication
that the design can be improved to better separate concerns.

IV. CONCLUSION

Architectural decay instances, that is, instances of archi-
tecture debt, negatively impact the lifecycle properties of a
software system and affect their major architectural elements,
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Fig. 3. The design structure matrix visualizing the ERS architecture, concerns, and decay instances

such as components and connectors. Thus, they are also
targets for restructurings that would ameliorate those negative
impacts. However, before restructuring can be performed,
architectural decay instances must be detected. In this paper,
we have provided uniform models that enable the detection of
architectural decay instances. In particular, we have demon-
strated that architectural decay instances (sometimes referred
to as architectural “bad smells”) can be modeled as EACNs
and PWDRs that can be derived from EACNs. We also have
shown how architectural decay instances can be manifested
in DSMs, which is a visualization of the PWDR, CE and
clustering of an ACN.

For our future work, we are currently using ACNs to help
detect an expanded list of architectural decay instances on
a variety of software systems for which we have reliable
representations of their architectures. In particular, the archi-
tectures of the systems include those recovered with the aid
of those systems’ architects and developers [11], e.g., Apache
Hadoop, a widely used open-source framework for distributed
processing of large datasets across clusters of computers [1].

While the architectures of these systems are derived from
code, we also plan to explore the use of prevailing UML
models in order to transform them to DSMs so that we can
detect architectural decay instances using those models. Lastly,
we also plan to detect and locate architectural decay instances
by comparing how architectural building blocks should change
together based on the architectural structure and how they
actually change together as reflected in the revision history.
The rationale is that if, for example, two separate components
always change together to accommodate modification requests
but they belong to two separate concerns that are supposed

to evolve independently, we consider these components to be
exhibiting an architectural decay instance.
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