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Abstract—Many techniques have been proposed to automati-
cally recover software architectures from software implementa-
tions. A thorough comparison among the recovery techniques is
needed to understand their effectiveness and applicability. This
study improves on previous studies in two ways.

First, we study the impact of leveraging more accurate
symbol dependencies on the accuracy of architecture recovery
techniques. Previous studies have not seriously considered how
the quality of the input might affect the quality of the output for
architecture recovery techniques.

Second, we study a system (Chromium) that is substantially
larger (9.7 million lines of code) than those included in previous
studies. Obtaining the ground-truth architecture of Chromium
involved two years of collaboration with its developers. As part
of this work we developed a new submodule-based technique to
recover preliminary versions of ground-truth architectures.

The other systems that we study have been examined pre-
viously. In some cases, we have updated the ground-truth
architectures to newer versions, and in other cases we have
corrected newly discovered inconsistencies.

Our evaluation of nine variants of six state-of-the-art ar-
chitecture recovery techniques shows that symbol dependencies
generally produce architectures with higher accuracies than
include dependencies. Despite this improvement, the overall
accuracy is low for all recovery techniques. The results suggest
that (1) in addition to architecture recovery techniques, the
accuracy of dependencies used as their inputs is another factor
to consider for high recovery accuracy, and (2) more accurate
recovery techniques are needed.

Our results show that some of the studied architecture recovery
techniques scale to the 10M lines-of-code range (the size of
Chromium), whereas others do not.

I. INTRODUCTION

Software architecture is crucial for program comprehen-

sion, programmer communication, and software maintenance.

Unfortunately, documented software architectures are either

nonexistent or outdated for many software projects. While it

is important for developers to document software architecture

and keep it up-to-date, it is costly and difficult. Even medium

sized projects of 70K to 280K source lines of code (SLOC)

require on average 100 hours of work by an experienced

recoverer to create an accurate ground-truth architecture [1].

In addition, as software grows in size, it is often infeasible for

developers to have complete knowledge of the entire system

to build an accurate architecture.

Many techniques have been proposed to automatically or

semi-automatically recover software architectures from soft-

ware code bases [2]–[7]. To understand their effectiveness,

thorough comparisons of existing architecture recovery tech-

niques are needed. Several studies have been conducted to

evaluate different architecture recovery techniques [2], [8], [9].

The latest study [10], compared nine variants of six existing

architecture recovery techniques. This study found that, while

the accuracy of the recovered architectures varies and some

techniques outperform others, their accuracy is relatively low

overall.

This previous study used include dependencies as inputs to

the existing recovery techniques, which are file-level depen-

dencies established when one file declares that it includes an-

other file. In general, the include dependencies are inaccurate.

For example, file foo.c may declare that it includes bar.h,

but may not use any functions or variables declared or defined

in bar.h. Using include dependencies, one would conclude

that foo.c depends on bar.h, while foo.c has no actual

code dependency on bar.h.

In contrast, symbol dependencies are more accurate. A sym-

bol can be a function name or a global variable. For example,

consider two files Alpha.c and Beta.c: file Alpha.c
contains method A; and file Beta.c contains method B.

If method A invokes method B, then method A depends on

method B. Based on this information, we can conclude that

file Alpha.c depends on file Beta.c.

A natural question to ask is, to what extent would the use of

symbol dependencies affect the accuracy of architecture recov-

ery techniques? We aim to answer this question empirically.

The second question we study pertains to the scalability

of existing architecture recovery techniques. The largest soft-

ware system used in the published evaluations of architecture

recovery techniques comprises 4MSLOC, and it revealed the

scalability limit of several recovery techniques [10]. The

size of software is increasing, and many software projects

are significantly bigger than 4MSLOC. For example, the

Chromium open-source browser contains nearly 10MSLOC.

We test whether existing architecture recovery techniques can

scale to software of such size.

To this end, this paper compares the same nine vari-

ants of six architecture recovery techniques from the previ-

ous study [10] using symbol dependencies on five software

projects to answer the following research questions (RQ):

RQ1: Can more accurate dependencies improve the accu-

racy of existing architecture recovery techniques?
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RQ2: Can existing architecture recovery techniques scale

to large projects comprising 10MSLOC or more?

This paper makes the following contributions:

• We compared nine variants of six architecture recovery

techniques using two different types of dependencies:

symbol and include. To the best of our knowledge, this

is the first substantial study to compare different types

of dependencies for architecture recovery. (One of us

previously conducted a limited study on the effect of

different polymorphic call graph construction algorithms

on architecture recovery [11].)

• We found the types of dependencies and the recovery

algorithms have a significant effect on recovery accuracy.

In general, symbol dependencies produce software archi-

tectures with higher accuracy than include dependencies

(RQ1). Our results suggest that, apart from the selection
of the “right” architecture recovery techniques, the ac-
curacy of dependencies is another factor to consider for
high recovery accuracy.

• Our results show that the accuracy is low for all studied

techniques, corroborating past results [10].

• We recovered the ground-truth architectures of three open

source projects—Chromium, Bash and ArchStudio. At

9.7MSLOC, to the best of our knowledge, Chromium

is the largest project used for evaluating architecture

recovery techniques to date. The ground-truth architecture

of Chromium was not available previously. We obtained

it through two years of regular discussions and meetings

with Chromium developers. We also updated the architec-

tures of Bash and ArchStudio that were reported in [1].

• We propose a new submodule-based architecture recov-

ery technique that combines directory layout and build

configurations. The proposed technique was effective in

assisting in the recovery of ground-truth architectures.

Compared to FOCUS [12] which is used in the previ-

ous work [1] to recover ground-truth architectures, the

submodule-based technique is conceptually simple. Since

the technique is used for generating a starting point,

its simplicity can be beneficial; any issues potentially

introduced by the technique itself can later be mitigated

by the manual verification step.

• We found some recovery techniques do, and some do not,

scale to the size of Chromium. (RQ2).

II. RELATED WORK

A. Comparison of Software Architecture Recovery Techniques

Many architecture recovery techniques have been pro-

posed [2]–[7]. The most recent study [10] collected the

ground-truth architectures of eight systems and used them

to compare the accuracy of nine variants of six architecture

recovery techniques. Two of those recovery techniques—

Architecture Recovery using Concerns (ARC) [4] and Al-

gorithm for Comprehension-Driven Clustering (ACDC) [7]—

routinely outperformed the others; however, even the accuracy

of these techniques showed significant room for improvement.

Architecture recovery techniques have been evaluated

against one another in many other studies [2], [5], [8]–[10],

[13]. The results of the different studies are not always

consistent. scaLable InforMation BOttleneck (LIMBO) [14],

a recovery technique leveraging an information loss measure,

and ACDC performed similarly in one study [2]; however, in

a different study, Weighted Combined Algorithm (WCA) [15],

a recovery technique based on hierarchical clustering, outper-

formed Complete Linkage (CL) [15]. In yet another study, CL

is shown to be generally better than ACDC [9]. In the most

recent study, ARC and ACDC surpass LIMBO and WCA [10].

Wu et al. [9] compared several recovery techniques utilizing

three criteria: stability, authoritativeness, and non-extremity.

For this study, no recovery technique was consistently superior

to others on multiple measures. A possible explanation for the

inconsistent results of these studies is their use of different

assessment measures.

The types of dependencies which serve as input to recovery

techniques vary among studies: some recovery techniques

leverage control and data dependencies [16]–[18]; other tech-

niques use static and dynamic dependency graphs [2]. Previous

work [11] examined the effect of different polymorphic call

graph construction algorithms on automatic clustering.

None of the papers mentioned above assess the influence of

symbol dependencies on recovery techniques when compared

to include dependencies. This paper is the first to study (1) the

impact of symbol dependencies on the accuracy of recovery

techniques and (2) the scalability of recovery techniques to a

large project with nearly 10MSLOC.

B. Recovery of Ground-Truth Architectures

Garcia et al. [1] describe a method to recover the ground-

truth architectures of four open-source systems. The method

involves extensive manual work, and the mean cost of recov-

ering the ground-truth architecture of seven systems ranged

from 70KSLOC to 280KSLOC was 107 hours.

Bowman et al. [19] and Xiao et al. [20] recovered the

ground-truth architectures of the Linux kernel 2.0 and Mozilla

1.3 respectively. The Linux kernel and Mozilla are large

systems, but the evaluated versions are more than a decade

old. The version of the Linux kernel recovered was from 1996

and at that time, it contained only 750KSLOC. Mozilla 1.3 is

from 2003 with 4MSLOC.

Grosskurth et al. [21] studied the architecture and evo-

lution of web browsers and provide guidance for obtaining

a reference architecture for web browsers. Their work does

not address the challenges of recovering an accurate ground-

truth architecture in general. In addition, it is not clear if

their approach is accurate for modern web browsers such as

Chromium, which use new design principles such as a modern

threading model for tabbed browsing.

Several commercial tools such as Lattix [22] and Struc-

ture101 [23] are used to ensure the quality of a given archi-

tecture and monitor its evolution. As far as we know, none of

those tools claim to generate automatically the ground-truth

architecture of a project.
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III. APPROACH

Our approach consists of two parts: the extraction of symbol

dependencies and obtaining a ground-truth architecture. In the

rest of this section, we describe the manner in which we extract

symbol and include dependencies for C/C++ (Section III-A)

and Java (Section III-B), discuss why symbol dependencies

are more accurate than include dependencies (Section III-C),

and elaborate on our approach for obtaining ground-truth

architectures (Section III-D).

A. Obtaining Dependencies for C/C++ Projects

To extract symbol dependencies, we use the technique

built by our team that scales to software systems comprising

millions of lines of code [24]. The technique compiles a

project’s source files with LLVM into bitcode, analyzes the

bitcode to extract the symbol dependencies for all symbols

inside the project, and groups dependencies based on the files

containing the symbols. At this stage, our extraction process

has not considered symbol declarations. As a result, header-file

dependencies are often missed because many header files only

contain symbol declarations. To ensure we do not miss such

dependencies, we augment symbol dependencies by analyzing

#include statements in the source code.

Include dependencies are transitive dependencies utilized by

the Makefile during compilation. As in prior work [10], we use

mkdep to extract them.

B. Obtaining Dependencies for Java Projects

To extract symbol dependencies, we leverage a tool that

operates at the Java bytecode level and extracts high-level

information from the bytecode in a human readable for-

mat [25]. This allows for method calls and member access (i.e.,

relationships between symbols) to be recorded without having

to analyze the source code. By using this information, it is

possible to build a complete graph of the symbol dependencies

for the Java projects. This method only accounts for symbols

used in the bytecode and does not account for runtime usage

which can vary due to reflective access.

We extract include dependencies for Java projects from

import statements in Java source code by utilizing a script to

determine imports and their associated files. The script used

to extract the dependencies detects all the files in a package.

Then for every file, it evaluates each import statement and

adds the files mentioned in the import as a dependency. When a

wildcard import is evaluated, all classes in the referred package

are added as dependencies.

C. Relative accuracy of Include and Symbol Dependencies

C/C++ include dependencies tend to miss or over-

approximate relationships between files, rendering such depen-

dencies inaccurate. Specifically, include dependencies over-

approximate relationships in cases where a header file is

included but none of the functions or variables defined in the

header file are used (recall Section I).

In addition, include dependencies ignore relationships be-

tween non-header files (e.g., .cpp to .cpp files), resulting in

a significant number of missed dependencies. For example,

consider the case where A.c depends on a symbol defined in

B.c because A.c invokes a method defined in B.c. Include

dependencies will not contain a dependency from A.c to B.c
because A.c includes B.h but not B.c. For example, in

Bash, we only identified 4 include dependencies between two

non-header files, although there are 1035 actual dependencies

between non-header files based on our symbol results. Include

dependencies miss many important dependencies since non-

header files are the main semantic components of a project.

A recovery technique can treat non-header and header files

whose names before their extensions match (e.g., B.c and

B.h) as a single unit to alleviate this problem. However, this

remedy does not handle cases where such naming conventions

are not followed or when the declarations for types are not in

a header file.

Include dependencies generated by mkdep use transitive

dependencies for header files. Consider an example of four

files A.c, A.h, B.c, and B.h, where A.c includes A.h and

A.h includes B.h; A.c has an include dependency with B.h
because including A.h implicitly includes everything that A.h
includes.

For Java projects, include dependencies miss relationships

between files because they do not account for intra-package

dependencies or fully-qualified name usage. At the same time,

include dependencies can represent spurious relationships be-

cause some imports are unused and wildcard imports are

overly inclusive. Include dependencies are therefore signifi-

cantly less accurate than symbol dependencies.

D. Obtaining Ground-Truth Architectures

To measure the accuracy of existing software architecture

recovery techniques, we need to know the “ground-truth” ar-

chitecture of a target project. Since it is prohibitively expensive

to build architectures manually for large and complex software,

such as Chromium, we use a semi-automated approach for

ground-truth architecture recovery.

We initially showed the architecture recovered using ACDC

to a Chromium developer. He explained that most of the

ACDC clusters did not make sense and suggested that we

start by considering module organization in order to recover

the ground truth.

In response, we have introduced a simple submodule-based
approach to extract automatically a preliminary ground-truth

architecture by combining directory layout and build con-

figurations. Starting from this architecture, we worked with

developers of the target project to identify and fix mistakes in

order to create a ground-truth architecture.

The submodule-based approach groups closely related mod-

ules, and considers which modules are contained within an-

other module. It consists of three steps. First, we determine the

module that each file belongs to by analyzing the configuration

files of the project.

Second, we determine the submodule relationship between

modules. We define a submodule as a module that has all of

its files contained within the subdirectory of another module.
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Fig. 1. Example Project Layout

Fig. 2. Example Project Submodules

We first determine a module’s location, which is defined as

the common parent directories that contain at least one file

belonging to the module. Then we can determine if a particular

module has a relation to another module.

For example, assume a project has four modules named

A, B, C, and D. The file structure of the project is shown in

Figure 1, while the module structure that we generate is shown

in Figure 2.

• Module A: contains fileA1.cpp and fileA2.cpp.

Location is project/folder2.

• Module B: contains fileB1.cpp and fileB2.cpp.

Location is project/folder2/folder2_2.

• Module C: contains fileC1.cpp. Location is

project/folder2/folder2_3.

• Module D: contains fileD1.cpp and fileD2.cpp.

Location is both project/folder1 and project/
folder2/folder2_3.

Based on the modules’ locations, we determine that module

B is a submodule of module A because module B’s lo-

cation project/folder2/folder2_2 is within module

A’s location project/folder2. Similarly, module C is a

submodule of module A. The reason module D has two folder

locations is because there is no common parent between the

two directories. If module D had a file in the project folder,

then its location would simply be project. Module D is

not a submodule of module A because it has a file located in

project/folder1.

Last, we group modules that are submodules of one another

into a cluster. In the example above, we cluster modules A, B

and C into a single cluster and leave module D on its own.

This preliminary version of the ground-truth architecture

does not accurately reflect the “real” architecture of the project.

Hundreds of hours of manual work are then required to

investigate the source code of the system to verify and fix

the relationships obtained. When we are satisfied with our

ground-truth version, we send it to the developers for certifi-

cation. Multiples rounds of verifications, based on developers’

feedback, are necessary to obtain an accurate ground-truth

architecture. For Chromium, it took two years of meetings

and email exchanges with Chromium developers to obtain the

ground truth.

Prior work [1] used a different approach, FOCUS [12],

to recover preliminary versions of ground-truth architectures.

Compared to FOCUS, the proposed submodule-based tech-

nique is conceptually simpler. However, the submodule-based

technique uses the same general strategy as FOCUS and can, in

fact, be used as one of FOCUS’s pluggable elements. This fact,

along with the extensive manual verification step, suggests that

the strategy used as the starting point for ground-truth recovery

does not impact the resulting architecture (as already observed

in [1]).

IV. SELECTED RECOVERY TECHNIQUES

We select the same nine variants of six architecture recov-

ery techniques as in previous work [10] for our evaluation.

Four of the selected techniques (ACDC, LIMBO, WCA, and

Bunch [6]) use dependencies to determine clusters, while the

remaining two techniques (ARC and ZBR [3]) use textual in-

formation from source code. We include techniques that do not

use dependencies to (1) assess the accuracy of finer-grained,

accurate dependencies against these information retrieval-

based techniques and to (2) determine their scalability.

Algorithm for Comprehension-Driven Clustering
(ACDC) [7] is a clustering technique for architecture recovery.

We included ACDC because it performed well in several

previous studies [2], [8]–[10]. The main pattern used by ACDC

is called the “subgraph dominator pattern”. To identify this

pattern, ACDC detects a dominator node n0 and a set of

nodes N = {ni | i ∈ N} that n0 dominates. A dominator

node n0 dominates another node ni if any path leading to ni

passes through n0. Together, n0, N , and their corresponding

dependencies form a subgraph. ACDC groups the nodes of

such a subgraph together into a cluster.

Bunch [6], [26] is a technique that transforms the archi-

tecture recovery problem into an optimization problem. An

optimization function called Modularization Quality (MQ)

represents the quality of a recovered architecture. Bunch uses

hill-climbing and genetic algorithms to find a partition (i.e.,

a grouping of software entities into clusters) that maximizes

MQ. As in previous work [10], we evaluate two versions of the

Bunch hill-climbing algorithms—Nearest and Steepest Ascent

Hill Climbing (NAHC and SAHC).

Weighted Combined Algorithm (WCA) [15] is a hier-

archical clustering algorithm that measures the inter-cluster

distance between software entities and merges them into

clusters based on this distance. Two measures are proposed to

measure the inter-cluster distance: Unbiased Ellenberg (UE)

and Unbiased Ellenberg-NM (UENM). The main difference

between these measures is that UENM integrates more infor-

mation into the measure and thus might obtain better results.

In our recent study [10], UE and UENM performed differently

depending on the systems tested, therefore, we evaluate both.

LIMBO [14] is a hierarchical clustering algorithm that aims

to make the Information Bottleneck algorithm scalable for

large data sets. The accuracy of this algorithm was evaluated
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TABLE I
EVALUATED PROJECTS AND ARCHITECTURES. †CLUSTER DENOTES THE NUMBER OF CLUSTERS IN THE GROUND-TRUTH ARCHITECTURES.

Project Version Description SLOC File Cluster† Include Dep. Symbol Dep.
Chromium svn-171054 Web Browser 9.7M 18,698 67 1,183,799 297,530
ITK 4.5.2 Image Segmentation Toolkit 1M 7,310 11 169,017 30,784
Bash 4.2 Unix Shell 115K 373 14 2,512 2,481
Hadoop 0.19.0 Data Processing 87K 591 67 1,656 3,101
ArchStudio 4 Architecture Development 55K 604 57 866 1,697

in several studies. It performed well in most of the experi-

ments [2], [8], except in our recent study [10] where LIMBO

achieved surprisingly poor results.

Architecture Recovery using Concerns (ARC) [4] is a

hierarchical clustering algorithm that relies on information

retrieval and machine learning to perform a recovery. This

technique does not use dependencies and is therefore not used

to evaluate the influence of different levels of dependencies.

ARC is one of the two best-scoring techniques in our previous

evaluation [10] and thus is important to compare against when

evaluating for accuracy.

Similar to ARC, Zone Based Recovery (ZBR) [3] is

a recovery technique based on natural language semantics

of identifiers found in the source code. ZBR demonstrated

accuracy in recovering Java package structure [3] but struggled

with memory issues when dealing with larger systems [10].

V. EXPERIMENTAL METHOD

A. Analyzed Projects

We conduct our comparative study on five open source

projects, Bash, ITK, Chromium, ArchStudio and Hadoop.

Detailed information on these projects can be found in Table I.

For the C/C++ projects, the number of include dependencies

is much larger than the number of symbol dependencies, e.g.,

297,530 symbol dependencies versus 1,183,799 include depen-

dencies for Chromium. This is the result of both transitive and

over-approximation of dependencies, detailed in Section III-C.

Compared to previous work [10], we do not use Linux

2.0.27 and Mozilla 1.3 because our tool extracting symbol-

level dependencies for C++ projects works with LLVM. Mak-

ing those two projects compatible with LLVM would require

heavy manual work. Instead, we added ITK to have a medium-

sized C/C++ project for evaluation. We also added Chromium,

for which we recovered the ground truth. Due to issues around

resolving library dependencies with an older version of OODT

used in the previous work, we were unable to use it for our

study.

For Chromium, the ground-truth architecture was extracted

using the submodule approach outlined in Section III-D.

ITK was refactored in 2013 and its ground-truth architecture

extracted by ITK’s developers is available. ITK developers

involved in the ITKv4 project confirmed that this architecture

was still valid for ITK 4.5.2.

The version of Bash used in the recent study [10] was from

1995. Bash has been changed significantly since then (e.g.,

from 70KSLOC to 115KSLOC). Therefore, we recovered the

ground-truth architecture of the latest version of Bash and used

it in our study. Our certifier for Bash is one of Bash’s primary

developers and its sole maintainer.

The ground-truth architecture for ArchStudio was updated

from prior work [1] to be defined at the file-level instead of

at the class-level. Additionally, ArchStudio’s original ground-

truth architecture had a number of inconsistencies and missing

files which were verified and corrected by the primary archi-

tect.

Hadoop, also an open-source Java project and used in a

recent study [10] was the other Java project we evaluated. Its

original ground-truth architecture was based on version 0.19.0

and had to be converted from class-level to file-level for our

analysis.

B. Architecture Recovery Software and Parameters

To answer the research questions, we compare the clustering

results obtained from nine variants of the six architecture

recovery techniques, using include and symbol dependencies.

We obtained ACDC and Bunch from their authors’ websites.

For the other techniques, we used our implementation from

our previous study [10]. Each of those implementations was

shared with the original authors of the recovery techniques

and confirmed as correct [10]. Due to the non-determinism of

the clustering algorithms used by ACDC and Bunch, we ran

each algorithm five times and reported only the best results.

WCA, LIMBO, and ARC can take varying numbers of clusters

as input. Based on the number of clusters in the ground-truth

architectures, we experimented with 5 to 75 clusters as inputs

for Bash and ITK, 25 to 75 for Chromium and 30 to 80 for

Hadoop and ArchStudio with an increment of 5 for all cases.

ARC also takes a varying number of concerns as input. We

experimented with 10 to 150 concerns in increments of 10.

We report only the best results for each technique.

C. Experimental Environment

For Bash, Hadoop, and ArchStudio, all techniques take a

few seconds to a few minutes to run. For large projects such as

ITK and Chromium, each technique take several hours or days

to run. Running all experiments for Chromium would take

more than 20 days of CPU time. This is why we parallelized

our experiments by using two machines. We ran ZBR with the

two weight variations described in Section IV on a 3.2GHz

i7-3930K desktop with 12 logical cores, 6 physical cores, and

48GB of memory. We ran all the other recovery techniques

on a 3.3GHz E5-1660 server with 12 logical cores, 6 physical

cores, and 32GB memory.

D. Accuracy Measures

There might be multiple ground-truth architectures for a

system [1], [19]; that is, experts might disagree. Therefore,
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a recovered architecture may be different from a ground-

truth architecture used in this paper, but close to another

ground-truth architecture of the same project. To mitigate this

threat, we selected four different metrics to evaluate recovery

techniques. One of the metrics—TurboMQ—is independent

of any ground-truth architecture, which calculates the quality

of the recovered architectures. When we use TurboMQ to

compare different recovery techniques, the threat of multiple

ground-truth architectures should not apply. The remaining

three metrics—MoJoFM , a2a and c2ccvg—calculate the sim-

ilarity between a recovered architecture and a ground-truth

architecture. If one recovery technique consistently performs

well according to all metrics, it is less likely due to the

bias of one metric or the particular ground-truth architecture.

Although using four metrics cannot eliminate the threat of

multiple ground-truth architectures entirely, it should give our

results more credibility than using MoJoFM alone.

MoJoFM [27] is defined by the following formula,

MoJoFM(M) = (1− mno(A,B)

max(mno(∀A,B))
)× 100% (1)

where mno(A,B) is the minimum number of Move or Join

operations needed to transform the recovered architecture A
into the ground truth B. This measure allows us to compare the

architecture recovered by the different techniques according to

their similarity with the ground-truth architecture. A score of

100% indicates that the architecture recovered is the same as

the ground-truth architecture. A lower score results in greater

disparity between A and B. MoJoFM has been shown to be

more accurate than other measures and was used in the latest

empirical study of architecture recovery techniques [5], [10].

Architecture-to-architecture [28] (a2a) is designed to ad-

dress some of MoJoFM drawbacks. MoJoFM ’s Join opera-

tion is excessively cheap for clusters containing a high number

of elements. This is particularly visible for large projects. This

results in high MoJoFM values for architectures with many

small clusters. In addition, we discovered that MoJoFM does

not properly handle discrepancy of files between the recovered

architecture and the ground truth. We tried to reduce this prob-

lem by adding the missing files to the recovered architecture

into a separate cluster before measuring MoJoFM , but this

does not entirely solve the issue. In complement of MoJoFM ,

we use a new metric, a2a , based on architecture adaptation

operations identified in previous work [29], [30]. a2a is a

distance measure between two architectures:

a2a(Ai, Aj) = (1− mto(Ai, Aj)

aco(Ai) + aco(Aj)
)× 100%

mto(Ai, Aj) = remC(Ai, Aj) + addC(Ai, Aj) +

remE(Ai, Aj) + addE(Ai, Aj) +movE(Ai, Aj)

aco(Ai) = addC(A∅, Ai) + addE(A∅, Ai) +movE(A∅, Ai)

where mto(Ai, Aj) is the minimum number of operations

needed to transform architecture Ai into Aj ; and aco(Ai) is

the number of operations needed to construct architecture Ai

from a “null” architecture A∅.

mto and aco are used to calculate the total numbers of the

five operations used to transform one architecture into another:

additions (addE ), removals (remE ), and moves (movE ) of

implementation-level entities from one cluster (i.e., compo-

nent) to another; as well as additions (addC ) and removals

(remC ) of clusters themselves.

Cluster-to-cluster coverage (c2ccvg ) is a metric used in

our previous work [31] to assess component-level accuracy.

This metric measures the degree of overlap between the

implementation-level entities contained in two clusters:

c2c(ci, cj) =
|entities(ci) ∩ entities(cj )|

max(|entities(ci)| , |entities(cj )|) × 100%

where ci is a technique’s cluster; cj is a ground-truth cluster;

and entities(c) is the set of entities in cluster c. The denomi-

nator is used to normalize the entity overlap in the numerator

by the number of entities in the larger of the two clusters.

This ensures that c2c provides the most conservative value of

similarity between two clusters.

To summarize the extent to which clusters of techniques

match ground-truth clusters, we leverage architecture coverage
(c2ccvg ). c2ccvg is a change metric from our previous work

[31] that indicates the extent to which one architecture’s

clusters overlap the clusters of another architecture:

c2ccvg(A1 ,A2 ) =
|simC (A1 ,A2 )|

|A2 .C | × 100%

simC (A1 ,A2 ) = {ci | (ci ∈ A1, ∃cj ∈ A2) ∧
(c2c(ci, cj) > thcvg)}

A1 is the recovered architecture; A2 is a ground-truth archi-

tecture; and A2.C are the clusters of A2. thcvg is a threshold

indicating how high the c2c value must be for a technique’s

cluster and a ground-truth cluster in order to count the latter

as covered.

Turbo Modularization Quality (TurboMQ) is the final

metric we are using in this paper. Modularization metrics mea-

sure the quality of the organization and cohesion of clusters

based on the dependencies. We implemented the TurboMQ
version because it has better performance than BasicMQ [32].

To compute TurboMQ two elements are required: intra-

connectivity, and extra-connectivity. The assumption behind

this metric is that architectures with high intra-connectivity

are preferable to architectures with a lower intra-connectivity.

For each cluster, we calculate a Cluster Factor as followed:

CFi =
μi

μi + 0.5×∑
j εij + εji

μi is the number of intra-relationships;εij + εji is the

number of inter-relationships between cluster i and cluster j.

TurboMQ is defined as the sum of all the Cluster Factors:

TurboMQ =

k∑

i=1

CFi
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TABLE II
MoJoFM RESULTS. †SCORES DENOTE RESULTS FOR INTERMEDIATE

ARCHITECTURES OBTAINED AFTER THE TECHNIQUE TIMED OUT.

Bash ITK Chrom. ArchS. Hadoop
Algorithm Inc Sym Inc Sym Inc Sym Inc Sym Inc Sym
ACDC 41 59 59 56 63 70 60 77 24 41
B-NAHC 44 47 37 41 28 31 52 59 29 29

B-SAHC 45 58 33 62 13† 70† 62 62 32 40
WCA-UE 28 37 31 32 23 23 32 33 14 17
WCA-UENM 28 34 31 32 23 23 32 33 14 17
LIMBO 27 28 31 31 TO 23 26 25 17 15
ARC 40 59 45 62 49
ZBR-tok 35 MEM MEM 48 29
ZBR-uni 39 MEM MEM 48 38

TABLE III
a2a RESULTS. †SCORES DENOTE RESULTS FOR INTERMEDIATE

ARCHITECTURES OBTAINED AFTER THE TECHNIQUE TIMED OUT.

Bash ITK Chrom. ArchS. Hadoop
Algorithm Inc Sym Inc Sym Inc Sym Inc Sym Inc Sym
ACDC 64 81 67 74 71 73 71 88 68 84
B-NAHC 66 86 71 80 69 73 71 83 68 81

B-SAHC 68 87 69 80 60† 71† 72 85 69 83
WCA-UE 63 81 74 82 70 75 71 84 68 81
WCA-UENM 63 81 74 82 70 75 71 84 68 81
LIMBO 63 80 71 80 TO 71 67 79 68 80
ARC 67 60 56 87 84
ZBR-tok 31 MEM MEM 85 81
ZBR-uni 32 MEM MEM 86 83

TABLE IV
c2ccvg RESULTS FOR MAJORITY(50%), MODERATE(33%) AND WEAK(10%) MATCHES. † SCORES DENOTE RESULTS FOR INTERMEDIATE

ARCHITECTURES OBTAINED AFTER THE TECHNIQUE TIMED OUT.

Bash ITK Chromium ArchStudio Hadoop
Algorithm Inc Sym Inc Sym Inc Sym Inc Sym Inc Sym
ACDC 21 50 71 36 79 92 0 0 62 0 0 53 16 30 80 22 48 92 9 21 47 56 77 93 0 3 43 7 18 49
B-NAHC 14 36 71 7 28 85 0 0 30 0 0 61 0 0 7 0 0 26 4 9 33 11 19 61 1 3 35 0 12 49

B-SAHC 14 36 64 21 57 92 0 0 0 0 7 92 0† 6† 19† 14† 33† 80† 7 16 49 11 19 54 1 3 32 4 10 49
WCA-UE 0 14 64 0 21 92 0 0 23 0 0 30 0 0 4 0 0 3 0 9 39 7 18 39 0 7 37 1 15 34
WCA-UENM 0 14 64 0 21 92 0 0 23 0 0 23 0 0 4 0 0 3 0 9 39 7 18 39 0 7 37 1 15 34
LIMBO 7 14 64 0 21 78 0 0 23 0 0 23 TO 0 0 0 0 0 77 0 0 93 0 0 64 0 0 79
ARC 28 57 86 7 7 54 3 7 80 21 49 88 6 36 84
ZBR-tok 0 0 21 MEM MEM 4 16 65 3 15 69
ZBR-uni 0 0 7 MEM MEM 4 23 47 3 19 72

VI. RESULTS

This section presents the results of our study that answer

the two research questions, followed by a comparison of our

results and those of prior work. Tables II-V show the results

for all four metrics when applied to a combination of a

recovery technique and system; and, if applicable for such a

combination, the results for include or symbol dependencies.

For certain combinations of recovery techniques and systems,

a result may not be attainable due to techniques running out

of memory (MEM) or timing out.

a) RQ1: Can accurate dependencies improve the accu-
racy of recovery techniques?: Table II and Table III respec-

tively show the MoJoFM and a2a scores to demonstrate

the overall accuracy of recovery techniques. Three recovery

techniques—ARC, ZBR-tok, and ZBR-uni—do not rely on

dependencies; however, we include them to assess the accuracy

of symbol dependencies against these information retrieval-

based techniques. The best score obtained for each system

across all recovery techniques is highlighted in dark gray; the

best score for each technique, when applied to a particular

system, is highlighted in light gray.

Our results indicate that symbol dependencies generally

improve the accuracy of recovery techniques over include

dependencies. According to a2a scores, symbol dependencies

outperform include dependencies for all of the combinations

of techniques and systems which use dependencies. Similar

results are observed for MoJoFM , despite two exceptions

where include dependencies performed between 1 and 3%

better. On average, symbol dependencies respectively improve

the accuracy by 12% and 7% according to a2a and MoJoFM .

According to both MoJoFM and a2a , the technique getting

the largest improvement by the use of symbol dependencies

over include dependencies is Bunch-SAHC (21.4% of im-

provement on average).

Table IV shows c2ccvg for three different values of thcvg ,

i.e., 50%, 33%, and 10%, (from left to right) for each combina-

tion of technique and dependency type. The first value depicts

c2ccvg for thcvg = 50% which we refer to as a majority match.

We select this threshold to determine the extent to which

clusters produced by techniques mostly resemble clusters in

the ground truth. The other two c2ccvg scores show the portion

of moderate matches (33%) and weak matches (10%). Dark

gray cells show the highest c2ccvg for a system across all

recovery techniques, while light gray cells show the highest

c2ccvg that each technique obtains for each system for a spe-

cific threshold thcvg . Several rows do not have any highlighted

cells; such rows indicate that c2ccvg is identical for include and

symbol dependencies. We observe significant improvement

when using symbol dependencies over include dependencies,

even for thcvg = 50%. For example, for ACDC on ArchStudio,

the c2ccvg for thcvg = 50% for include dependencies is 9%,

while using symbol dependencies increased it to 56%. Overall,

Table IV indicates that (1) the use of symbol dependencies

generally produces more accurate clusters (majority matches);

and that (2) c2ccvg is low regardless of the types of depen-

dencies used.

Table V presents the TurboMQ results, which measure

the organization and cohesion of clusters independent of

ground-truth architectures. Symbol dependencies obtain higher

TurboMQ scores than include dependencies. In other words,

symbol dependencies help recovery techniques produce ar-

chitectures with better organization and internal component

cohesion than include dependencies. TurboMQ results of the
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TABLE V
TurboMQ RESULTS. † SCORES DENOTE RESULTS FOR INTERMEDIATE

ARCHITECTURES OBTAINED AFTER THE TECHNIQUE TIMED OUT.

Bash ITK Chrom. ArchS. Hadoop
Algorithm Inc Sym Inc Sym Inc Sym Inc Sym Inc Sym
ACDC 4.77 16.9 503 422 183 443 19.2 51.6 13.0 21.8
B-NAHC 3.44 4.69 6.01 27.1 2.51 7.13 7.73 21.9 12.4 10.7

B-SAHC 3.33 7.09 5.20 193 141† 291† 15.5 22.0 10.9 14.7
W.-UE 0.11 1.64 0.51 1.71 0.06 1.02 0.45 17.8 0.70 7.24
W.-UENM 0.11 1.57 0.51 1.47 0.06 1.02 0.45 17.8 0.70 7.24
LIMBO 1.11 4.78 1.83 2.48 TO 1.10 1.29 25.1 1.02 15.4
ARC 2.71 8.52 0.09 0.33 7.89 10.2 13.8 37.3 5.33 25.4
ZBR-tok 0.32 1.24 MEM MEM 3.54 15.3 3.16 13.0
ZBR-uni 0.64 0.66 MEM MEM 3.15 14.9 4.03 16.5

summation of individual scores for each cluster in the archi-

tecture make it biased toward architectures with an extremely

high number of clusters. For example, ACDC for Chromium,

with more than 2000 clusters, obtains TurboMQ scores with

one to two orders of magnitude larger than the other metrics.
The overall conclusion from applying these four metrics

is that symbol dependencies allow recovery techniques to

increase their accuracy for all systems in almost every case,

independently of the metric chosen. The different metrics

sometimes contradict one another. For example, for ITK,

according to TurboMQ , include dependencies are better than

symbol dependencies for ACDC, while it is the opposite

according to a2a . This difference is likely to be due to the

difference of perspective from which the metrics measure an

architecture.
Despite the accuracy improvement of using symbol depen-

dencies over include dependencies, c2ccvg results for majority

match are low. This indicates that these techniques’ clusters

are significantly different from clusters in the corresponding

ground truth. It suggests that improvement is needed for all

the evaluated recovery techniques.
b) RQ2: Can existing architecture recovery techniques

scale to large projects comprising 10MSLOC or more?:
Overall, ACDC is the most scalable technique. It took only

70-120 minutes to run ACDC on Chromium on our server.

The WCA variations and ARC have a similar execution time

(8 to 14 hours), with WCA-UENM slightly less scalable than

WCA-UE. Bunch-NAHC is the last technique which was able

to terminate on Chromium for both kinds of dependencies,

taking 20 to 24 hours depending on the kind of dependencies

used. LIMBO only terminated for symbol dependencies after

running for 4 days on our server.
Bunch-SAHC timed out after 24 hours for both include

and symbol dependencies. We report here the intermediate

architecture recovered at that time. Bunch-SAHC investigates

all the neighboring architectures of a current architecture

and selects the architecture that improves MQ the most;

Bunch-NAHC selects the first neighboring architecture that

improves MQ. Bunch-SAHC’s investigation of all neighboring

architectures makes it less scalable than Bunch-NAHC.
LIMBO failed to terminate for include dependencies after

more than 4 days running on our server. Two operations

performed by LIMBO, as part of hierarchical clustering,

result in scalability issues: construction of new features when

clusters are merged and computation of the measure used to

compare entities among clusters. Both of these operations are

proportional to the size of clusters being compared or merged,

which is not the case for other recovery techniques that use

hierarchical clustering (e.g., WCA).

ZBR needs to store data of the size nzV , where n is the

number of files being clustered, z is the number of zones,

and V is the number of terms. For large software (i.e., ITK

and Chromium), with thousands of files and millions of terms,

ZBR ran out of memory after using more than 40GB of RAM.

The use of symbol dependencies improves the recovery

techniques’ scalability over include dependencies for large

projects (i.e., ITK and Chromium). The main reason for this

phenomenon is that include dependencies generated by mkdep
are transitive dependencies, while symbol dependencies con-

tain direct dependencies.

c) Comparison with the Prior Work: As previously men-

tioned, three of our subject systems were also used in our

previous study [10]. It is difficult to compare our results with

the prior study for several reasons explained in Section V-A.

When using the same type of dependencies (Inc) as in our

previous study, we observe that the MoJoFM scores drop

by 6% on average for all techniques over the scores reported

in [10]. It is possible that the newer version of Bash is more

complex and its architecture harder to automatically recover.

In the cases of Hadoop and ArchStudio, our previous study

used a different level of granularity (class level), which makes

comparison with current work irrelevant.

VII. THREATS TO VALIDITY

There is not necessarily a unique, correct architecture for a

system [1], [19]. Recovering ground-truth architectures require

heavy manual work from experts. Therefore, it is challenging

to obtain different certified architectures for the same system.

As we are using only one ground-truth architecture, there is a

threat that our study is biased toward that specific architecture.

To reduce this threat, we use four different metrics, including

one independent of the ground-truth architecture. Two of the

metrics used in this study were developed by some authors

of this paper, which might have caused a bias in this study.

However, all four metrics, including metrics developed inde-

pendently, follow the same trend—symbol dependencies are

better than include dependencies—which mitigates some of

the potential bias.

The metrics chosen in this paper measure the similarity and

quality of an architecture at different levels—the system level

(measured by MoJoFM and a2a), the component level (mea-

sured by c2ccvg ) and the dependency-cohesion level (measured

by TurboMQ). In future work, we intend to measure the

accuracy of an architecture from an additional perspective,

by analyzing whether the architecture contains undesirable

patterns or follows good design principles.

We have evaluated recovery techniques on only five systems.

To mitigate this threat, we selected systems of different sizes,

functionalities, architecture paradigms, and languages.
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VIII. LESSONS LEARNED

a) Granularity Affects Scalability: Architecture recovery

techniques and their associated metrics sometimes have diffi-

culty scaling to larger software systems. Grouping elements

in a coarser manner before performing extraction can improve

scalability. For example, developers of large projects such as

ITK and Chromium often define large entities of files called

modules which can be used as input elements for recovery.

b) Granularity Affects Accuracy: Working at a coarser

input level mitigates the scalability issue but creates new

accuracy challenges. For example, if elements of the ground

truth are files, and the recovered architecture is at the module

level, there are two possible approaches to compare them:

(1) create the ground truth at the module level, based on

ground truth at the file level, which requires significant manual

work and domain expertise; or (2) replace each module in the

recovered architecture by the files belonging to it. We have

conducted experiments using the second approach and found

that none of the existing metrics are suitable for comparing

the architectures recovered from file-level dependencies and

the architectures recovered from module-level dependencies.

For example, the TurboMQ values are higher for architectures

at the file level because architectures at the file level typically

contain more clusters. These metrics are designed without the

intent to accommodate different levels of granularity.

c) Architectures With Many Small Clusters Expose Lim-
itations of Metrics: Chromium’s ground truth architecture

contains 67 clusters, whereas ACDC produces an architecture

for Chromium with over 2000 clusters. Despite this intuitive

mismatch, ACDC obtains the best scores for Chromium on all

metrics except a2a , where it scores a close second.

d) File Mismatches Expose a Limitation of MoJoFM :
The dependencies are often incomplete. For example, in-

clude dependencies generally contains fewer files than the

ground-truth architecture. The reasons were explained in Sec-

tion III-C, including the fact that non-header-file to non-

header-file dependencies are missing. Unfortunately, one of

the most commonly used metrics, MoJoFM , assumes that the

two architectures under comparison contain the same elements.

Given this limitation, one can create a recovery technique

that achieves 100% MoJoFM score easily but completely

artificially. The technique would simply create a filename

that does not exist in a project, and place it in a single-

node architecture. The MoJoFM score between the single-

node architecture and the ground truth will be 100%. By

contrast, the a2a metric is specifically designed to compare

architectures containing different sets of elements.

e) Direct Dependencies versus Transitive Dependencies:
The mkdep tool that extracts include dependencies produces

transitive dependencies, whereas the tool we used for symbol

dependencies produces only direct dependencies. We con-

ducted a preliminary investigation with Bash that suggests

that this is another dimension of architecture recovery that

deserves further study. Our preliminary investigation compared

extraction using direct or transitive dependencies for Bash at

the symbol level, and found using direct dependencies to be

both more accurate and more scalable.

f) Dependencies Matter for Evaluating Architecture Re-
covery Techniques: This paper explores whether the type of

dependencies used affects the quality of the architecture recov-

ered, and answers in the affirmative: each recovery technique

gets better if more detailed input dependencies are used. This

paper has not focused on the question of which architecture

recovery technique is best. The results in this paper show,

however, that any attempted evaluation of architecture recov-

ery techniques must be careful about dependencies: MoJoFM
would select a different best technique in four out of five cases

with different input dependencies; a2a in 3/5 cases; c2c in 2/5

cases; and TurboMQ in 1/5 cases.

g) Which metrics and recovery techniques to use?: Using

only one metric is not enough to assess the quality of architec-

tures. However, some metrics are better than others depending

on the context. When working on software evolution, the

architectures being compared will likely include a different

set of files. In this case, a2a , c2c, and TurboMQ are more

appropriate than MoJoFM , which assumes that no files are

added or removed across versions. If the architectures being

compared contain the same files (e.g., comparing different

techniques with the same input), a2a will give results with

a small range of variations, making it difficult to differentiate

the results of each technique. In this case, MoJoFM results

are easier to analyze than the ones obtained with a2a .

We do not claim that one recovery technique is better

than the others. However, we can provide some guidelines

to help practitioners choose the right recovery technique for

their specific needs. According to our scalability study, ACDC,

ARC, WCA, and Bunch-NAHC are the most adapted to

recover large software architectures. When trying to recover

the low-level architecture of a system, practitioners should

favor ACDC, as it generally produces a high number of small

clusters. If a different level of abstraction is needed, WCA,

LIMBO, and ARC allow the user to choose the number of

clusters of the recovered architecture. Those techniques will be

more helpful for developers who already have some knowledge

of their project architecture.

IX. CONCLUSIONS

The paper evaluates the impact of using more accurate

symbol dependencies, versus the less accurate include depen-

dencies used in previous studies, on the accuracy of automatic

architecture recovery techniques. We studied nine variants

of six architecture recovery techniques on five open-source

systems. In general, each recovery technique extracted a better

quality architecture when using symbol dependencies instead

of the less-detailed include dependencies.

In some sense this general conclusion that quality of input

affects quality of output is not surprising: the principle has

been known since the beginning of computer science. Butler

et al. [33] attribute it to Charles Babbage, and note that the

acronym ‘GIGO’ was popularized by George Fuechsel in the

1950’s. What is surprising is that this issue has not previously
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been explored in greater depth in the context of architecture

recovery. Our results show that not only does each recovery

technique produce better output with better input, but also that

the highest scoring technique often changes when the input

changes.
There are other dimensions of the input data for archi-

tecture recovery that are worthy of future exploration, such

as: the granularity of the entities; direct versus transitive

dependencies; and the resolution of function pointers and

virtual calls. More empirical work is also needed to explore the

idea of multiple ground-truth architectures for a given system.

One possible direction is to do ground-truth extraction with

different groups of engineers on the same system. Another

direction would be to have system engineers develop ‘ground-

truth’ architectures starting from automatically recovered ar-

chitectures. The ground-truth architecture is an important input

into this kind of evaluation and deserves greater examination.
The results presented here clearly demonstrate that there

is room for more research both on architecture recovery

techniques and on metrics for evaluating them.
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