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Abstract—From its very inception, the study of software
architecture has recognized architectural decay as a regularly
occurring phenomenon in long-lived systems. Architectural decay
is caused by repeated changes to a system during its lifespan.
Despite decay’s prevalence, there is a relative dearth of empirical
data regarding the nature of architectural changes that may lead
to decay, and of developers’ understanding of those changes. In
this paper, we take a step toward addressing that scarcity by
conducting an empirical study of changes found in software
architectures spanning several hundred versions of 14 open-
source systems. Our study reveals several new findings regarding
the frequency of architectural changes in software systems, the
common points of departure in a system’s architecture during
maintenance and evolution, the difference between system-level
and component-level architectural change, and the suitability
of a system’s implementation-level structure as a proxy for its
architecture.

Index Terms—software architecture, architectural change, soft-
ware evolution, open-source systems, architecture recovery.

I. INTRODUCTION

Software maintenance tends to dominate the cost and

effort across activities in a system’s lifecycle. Changes to

a software system require understanding and, in many cases,

updating its architecture. Over time, a system’s maintenance is

increasingly affected by architectural decay, which is caused

by careless or unintended addition, removal, and modification

of architectural design decisions [34]. Decay results in systems

whose implemented architectures differ significantly, sometimes

fundamentally, from their designed architectures.

The observation that architectural decay occurs regularly

in long-lived systems has been part of software engineering

folklore from the very beginnings of the study of software

architecture [33]. It is widely accepted that, during the lifetime

of a software system, the system’s architecture changes
constantly, leading to instances of decay. Consequently, to

identify and track architectural decay across the evolution

history of a software system, architectural change must be

reliably determined and understood. In particular, engineers

must be able to pinpoint important architectural changes at

different levels of abstraction and from multiple architectural

views, which can, in turn, point to factors that cause decay.

*
Duc Le and Pooyan Behnamghader contributed equally to this work.

To study architectural change, the architecture at a given

point in time during a system’s evolution must be extracted. To

that end, a number of software architecture recovery techniques

have been designed [22], [13], [15], [36], [26], with the shared

objective of analyzing a system’s implementation in order to

extract its architecture.

At the same time, there is a relative scarcity of empirical

data about the nature of architectural change. One major

reason behind this scarcity has been a limited understanding

of the efficacy of existing architecture recovery techniques:

How do we know that we can draw reliable conclusions

about the architecture recovered from the code? Our recent

work has studied this question. To better understand the

accuracy of the existing architecture-recovery techniques and

the conditions under which a given technique excels or falters,

we performed an extensive comparative analysis of state-of-

the-art recovery techniques [15]. To evaluate their accuracy,

we developed [17] and applied [16] a process for producing

“ground-truth” software architectures, which were used to assess

the output of the automated recovery techniques.

With this improved understanding of the existing recovery

techniques, we are well-positioned to study architectural change.

To that end, we present a novel approach, Architecture Recovery,
Change, And Decay Evaluator (ARCADE). ARCADE is a

software workbench that employs (1) a suite of architecture-

recovery techniques and (2) a set of metrics for measuring

different aspects of architectural change. ARCADE constructs

an expansive view showcasing the actual (as opposed to

idealized) evolution of a software system’s architecture. While

analogous analyses have been attempted at the level of system

implementation [24], [19], [20], [11], [14], [30], ARCADE
represents the first solution of which we are aware that enables

investigating such issues at the level of architecture.

We have employed ARCADE in an empirical study in

which we analyzed several hundred versions of 14 open-source

Apache systems. Specifically, we applied three of the ten

architecture recovery techniques that ARCADE currently imple-

ments. Two of these techniques—Algorithm for Comprehension-
Driven Clustering (ACDC) [35] and Architecture Recovery
using Concerns (ARC) [18]—recover conceptual views of a

system’s architecture; the third—PKG—recovers a system’s

package-level organization which represents the implementation
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view of the architecture [23]. ACDC and ARC were chosen

because they demonstrated better accuracy and scalability

compared to other recovery techniques in our previous empirical

evaluation [15]. PKG provides an objective (if partial from

an architectural perspective) baseline for assessing our results.

Additionally, the three techniques approach recovery from

different, complementary angles: ACDC leverages a system’s

module dependencies; ARC relies on information retrieval to

derive a more semantic view of a system’s architecture; and

PKG strictly reflects the system’s implementation organization.

The empirical study reported in this paper has resulted in the

following findings regarding architectural changes in software

systems:

1) A semantics-based architectural view (yielded by ARC)

highlights notably different aspects of a system’s evolution

than the corresponding structure-based views (yielded

by ACDC and PKG). We found several cases in which

the semantics-based view revealed important architectural

changes that remained concealed in the two structure-

based views. At the same time, existing architecture

recovery techniques have heavily relied on structural

information [13], [15], [21], [22], [26]. This suggests

that more research on semantics-based recovery is needed

in order to properly aid software system maintenance.

2) Architectural changes occur within software components

during a system’s evolution, even when the system’s

overall architectural structure remains relatively stable.

Intra-component architectural changes are especially im-

portant to track in cases of relatively small system evolu-

tion increments. Relying on the architecture’s structural

stability in those cases may conceal non-trivial issues

that will become apparent much later, when subsequent

architectural changes make them more difficult to address.

3) While useful as an accurate representation of how a

system’s code base is organized (i.e., of the system’s

“implementation architecture” view [23]), the package

structure is a limited indicator of the system’s under-

lying architecture. PKG yielded especially misleading

results when implementation changes that were confined

to specific, already existing packages actually had far-

reaching architectural implications. Such implications

were more readily uncovered by ACDC and ARC, and

were independently confirmed by the authors through code

and architecture inspections.

4) Finally, dramatic architectural change tends to occur, both,

(1) between the end of one major version and the start of

the next one, and (2) across one or more minor versions

of a software system. In other words, minor versions may

result in major architectural changes. Furthermore, we

discovered that, in some cases, significant architectural

changes happen between pre-releases of a minor version.

In other words, major changes to a system’s architecture

occur very late in the run-up to a new release, when

common sense suggests that the architecture should be

stable. This suggests that a system’s versioning scheme is

not strongly related to the extent of architectural change.

In turn, this may be an added factor complicating the

maintenance of a system’s architecture and contributing

to architectural decay.

The remainder of the paper is organized as follows. Section

II summarizes the two related research threads that have been

brought together to enable the work described in this paper.

Section III presents the details of the ARCADE workbench.

Section IV describes the setup for our empirical study, Section

V its key results, and Section VI the threats to its validity.

A discussion of related work (Section VII) and conclusions

(Section VIII) round out the paper.

II. FOUNDATION

Our work discussed in this paper was directly enabled by

two research threads: (1) architecture change metrics and (2)

software architecture recovery. Before we discuss the details

of the ARCADE workbench in Section III, we will summarize

this foundational work. Some of the outcomes reported here

were described in prior publications, while others are novel; we

will clearly delineate the two in the remainder of this section.

A. Architectural Change Metrics

We consider architectural change at two different levels:

system-level and component-level. At the system-level, archi-

tectural change refers to the addition, removal, and modification

of components; at the component-level, architectural change

reflects the placement of a system’s implementation-level

entities inside the architectural components (i.e., clusters).

Studying architectural change at these two levels of abstraction

allows us to determine when a system-level architectural view

evolves significantly differently than a component-level view.

Identifying such discrepancies may reveal points in a software

system’s evolution where architectural maintenance issues

occur, as well as the scope of those issues.

Due to the lack of metrics for quantifying architectural

change, we created two new metrics for our study: a2a, a

system-level metric, and cvg, a component-level metric. These

two metrics have been recently used in a study of the impact

of the granularity of module dependencies on the quality of

architecture recovery [25]. We will also describe a metric,

c2c [15], because it enables the computation of cvg.

Architecture-to-architecture (a2a) is a metric we devel-

oped for assessing system-level change. a2a was inspired by

the widely used MoJoFM metric [37]. MoJoFM proved to be ill

suited for our study because it assumes that the component sets

in the architectures undergoing comparison will be identical;

this is unrealistic for systems whose versions are known to have

evolved, sometimes substantially. a2a is a distance measure

between two architectures:

a2a(Ai,A j) = (1− mto(Ai,A j)

aco(Ai)+aco(A j)
)×100%

mto(Ai,A j) = remC(Ai,A j)+addC(Ai,A j)+

remE(Ai,A j)+addE(Ai,A j)+movE(Ai,A j)

aco(Ai) = addC(A /0,Ai)+addE(A /0,Ai)+movE(A /0,Ai)
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where mto(Ai,A j) is the minimum number of operations needed

to transform architecture Ai into A j; and aco(Ai) is the number

of operations needed to construct architecture Ai from a “null”

architecture A /0.

Functions mto and aco are used to calculate the total numbers

of the five operations used to transform one architecture into

another [28], [32]: additions (addE), removals (remE), and

moves (movE) of implementation-level entities from one cluster

(i.e., component) to another; as well as additions (addC) and

removals (remC) of clusters themselves. Note that each addition

and removal of an implementation-level entity requires two

operations: an entity is first added to the architecture and only

then moved to the appropriate cluster; conversely, an entity is

first moved out of its current cluster and only then removed

from the architecture.

In order to ensure that the minimal number of move

operations movE(Ai,Aj) is applied in calculating a2a, we have

implemented an algorithm that finds the largest subset of

elements that stay in the same cluster when transforming Ai
into Aj. Our algorithm builds a weighted bipartite graph that

comprises the clusters of Ai and Aj. The weight of the edge

from c1 ∈ Ai to c2 ∈ Aj is |entities(c1)∩ entities(c2)|. We use

the Hungarian algorithm [29] to find the maximum weighted

matching in this bipartite graph. This matching between clusters

of the two architectures maximizes the number of matched

elements, and consequently minimizes movE(Ai,Aj).
Cluster-to-cluster (c2c) is a metric we developed and

applied in our recent work [15] to assess component-level

change. This metric measures the degree of overlap between

the implementation-level entities contained within two clusters:

c2c(ci,c j) =

∣
∣entities(ci)∩ entities(cj)

∣
∣

max(|entities(ci)| ,
∣
∣entities(cj)

∣
∣)
×100%

where entities(c) is the set of entities in cluster c; and ci is a

cluster from version i of system S. The denominator is used to

normalize the entity overlap in the numerator by the number

of entities in the larger of the two clusters. This ensures that

c2c provides the most conservative value of similarity between

two clusters.

Cluster coverage (cvg) is a new change metric we developed

to indicate the extent to which two architectures’ clusters

overlap according to c2c:

cvg(A1,A2) =
|simC(A1,A2)|
|allC(A1)| ×100%

simC(A1,A2) = {ci | (ci ∈ A1,∃c j ∈ A2)(c2c(ci,cj)> thcvg)}
simC(A1,A2) returns the subset of clusters from A1 that

have at least one “similar” cluster in A2. More specifically,

simC(A1,A2) returns A1’s clusters for which the c2c value

is above a threshold thcvg for one or more clusters from A2.

allC(A1) returns the set of all clusters in A1.

cvg allows an engineer to determine the extent to which

certain components existed in an earlier version of a system

or were added in a later version. For example, consider a

system whose version v2 was created after v1, and for which

cvg(A1,A2) = 70%, and cvg(A2,A1) = 40%. This means that

70% of the components in version v1 still exist in version v2,

while 100%−cvg(A2,A1) = 60% of the components in version

v2 have been newly added.

B. Architecture Recovery Tool Suite

We recently conducted a comparative evaluation of software

architecture recovery techniques [15]. The objective was to

evaluate the existing techniques’ accuracy and scalability on

a set of systems for which we and other researchers had

previously obtained “ground-truth” architectures [16]. To that

end, we implemented a tool suite offering a large set of

architecture recovery choices to an engineer.

Our study shows that a number of the state-of-the-art recov-

ery techniques suffer from accuracy and/or scalability problems.

At the same time, two techniques consistently outperformed

the rest across the subject systems. We select these techniques

for our analysis. These two techniques—ACDC [35] and

ARC [18]—take different approaches to architecture recovery:

ACDC leverages a system’s structural characteristics to cluster

implementation-level modules into architectural components,

while ARC focuses on the concerns implemented by a system.

The former is obtained via static dependency analysis, while

the latter leverages information retrieval and machine learning.

ACDC [35] groups entities into clusters based on patterns,

most of which involve the dependencies among the entities.

For example, ACDC’s main pattern attempts to group entities so

that only a single dependency exists between any two clusters.

ARC [18] groups entities that handle similar system concerns

into a single cluster. For instance, ARC may group together the

entities that handle user interface behaviors. We complement

these two clustering-based architectural views with PKG, a

tool we implemented to extract a system’s package structure.

Package structure is considered a reliable view of a system’s

“implementation architecture” [23]; while not indicative of the

actual architecture underlying the system [34], the package

structure provides a useful baseline (a “sanity check”) for our

study.

III. ARCADE

To study architectural change and decay, we have developed

ARCADE, a software workbench that (1) performs architecture

recovery from a system’s implementation, uses the recovered

information to compute (2) architectural change metrics and (3)

decay metrics, and (4) performs different statistical analyses of

the obtained data. As discussed previously, this paper presents

our study of architectural change. To that end, we will focus

on the first two aspects of ARCADE.

ARCADE’s foundational element is architecture recovery,

depicted as the Recovery Techniques component in the pipeline

represented in Figure 1. The architectures produced by Recov-
ery Techniques are directly used for studying change. ARCADE
currently provides access to ten recovery techniques; nine

techniques use algorithms for clustering implementation-level

elements into architectural components, while one technique

reports the implementation view of a system’s architecture (i.e.,
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Fig. 1: ARCADE’s components leveraged in this study and the artifacts it uses and produces.

the system’s directory and package structure). ARCADE thereby

allows an engineer (1) to extract multiple architectural views

and (2) to ensure maximum accuracy of extracted architectures

by highlighting their different aspects.

Since our previous evaluation [15] showed that two of

the techniques—ACDC and ARC—exhibit significantly better

accuracy and scalability than the remaining clustering-based

techniques, and that they produce complementary architectural

views (recall Section II-B), we focus on them in our study.

ACDC’s view is oriented toward components that are based on

structural patterns (e.g., a component consisting of entities that

together form a particular subgraph). On the other hand, ARC’s

view produces components that are semantically coherent due to

sharing similar system-level concerns (e.g., a component whose

main concern is handling of distributed jobs). We complement

the architectures recovered by ACDC and ARC with each

system’s package-structure view extracted by PKG.

In implementing the required architecture recovery features

in ARCADE, we had to overcome two related problems. First,

in order to represent the topic models needed for ARCADE’s

concern-based architecture recovery (ARC), we have used the

MALLET machine learning toolkit [27]. The topic-model

extraction algorithms implemented by MALLET are non-

deterministic. On the other hand, in order to meaningfully

compare two concern-based architectures as required for our

study, we needed a shared topic model for their recovery.

Therefore, for each subject system, we created a topic model

by using all available versions of the system as the input to

MALLET. The number of topics was determined based on our

experience with ARC from a previous empirical evaluation [15].

We then used this topic model to retrieve the architectures for

all of that system’s versions.

In addition, we also computed architectural changes between

a large number of pairs of different systems’ versions by using

topic models created from only the involved two versions. The

architectural change results yielded by the two approaches—a

single topic model for all system versions vs. different topic

models for each pair of versions—are highly similar, with

the variation of 1-2%. This supports our hypothesis that topic

models created from a large number of versions would not

produce significant noise when recovering the architecture of

a particular version.

Second, to recover architecture using ACDC, we obtained

an implementation of the technique from ACDC’s authors [35]

and used its default settings. Although ACDC relies on

a deterministic clustering algorithm, it turned out that its

implementation is not deterministic, which created inaccuracies

in our empirical analysis. We traced the source of ACDC’s non-

determinism to the Orphan Adoption (OA) algorithm used in its

implementation. OA is an incremental clustering algorithm that

ACDC employs to assign a system’s implementation entities

to architectural components. The order of entities provided as

input affects the result of OA, and subsequently the architecture

recovered by ACDC. In the original implementation of ACDC,

this order is not the same in every execution of the algorithm,

causing the non-deterministic output. We resolved this problem

by first sorting the input to OA based on the full package name

of each class file.

For each architecture, ARCADE computes the three change

metrics discussed in Section II-A. To that end, the Change
Metrics Calculator component analyzes the architectural infor-

mation yielded by Recovery Techniques. The computed metrics

comprise the final artifact produced by ARCADE (Change
Metrics Values in Figure 1) that is relevant to this paper.1 This

artifact is then used to interpret the degree of architectural

change in the manner discussed in Section IV. For the three

change metrics, ARCADE employs our own implementations.

ARCADE computes the Change Metrics Values by com-

paring the architecture of a software system version with the

architectures of its ancestors or descendants. To conduct this

comparison, ARCADE needs to know the evolution path of the

software system. The evolution path is a sequence of version

pairs. A version pair is an ordered pair (s, t) of versions from a

given system, where t is the target version that evolved directly

from the source version s. Each value for the three metrics from

Section II-A is computed using a version pair. We obtained the

correct evolution paths for our subject systems by using git-log

[3] and svn-graph-branches [7]. ARCADE is implemented in

Java and Python; it is available for download from [2].

IV. EMPIRICAL STUDY SETUP

Our study targets four research questions regarding architec-

tural change. The absence of empirical data on architectural

change in real systems has resulted in that phenomenon

being relatively poorly understood. As a result, the extent

of architectural change, types of architectural change, and the

points in a system’s lifecycle when major architectural change

occurs are generally unclear.

RQ1: To what extent do architectures change at the
system level? This research question focuses on the structural

stability of a system’s architecture. During development and

evolution, a system’s implementation entities are usually

reallocated (added, removed, moved) among its architectural

components. This question will shed light on when, how, and

to what extent this reallocation happens.

RQ2: To what extent do architectures change at the com-
ponent level? This research question focuses on the structural

1The current version of ARCADE [2] also analyzes and quantifies different
symptoms of architectural decay for a given system. However, these features
are currently under evaluation and are outside the scope of this paper.
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stability of a system’s individual components. Implementation-

level entities that realize an architectural component will change

over time as the system evolves. Beyond a certain change

threshold, it may be difficult to argue that an evolved component

is still “the same” as the original component. This question

will, therefore, study the component evolution patterns and

thresholds.

RQ3: Do architectural changes at the system and compo-
nent levels occur concurrently? This research question aims

to reveal the extent to which changes to overall architectural

structure are also accompanied by changes to individual system

components, and when and why the two fall out of step.

RQ4: Does significant architectural change occur be-
tween minor system versions within a single major version?
As a commonly adopted rule of thumb, developers decide to

introduce a new major version for their system when the new

APIs become incompatible with the previous versions (e.g., as

in the case of the Apache Portable Runtime (APR) project [1]).

In turn, this should imply a substantial change to the system’s

architecture. This research question will target our hypothesis

that a system’s architecture may experience significant change

even though the system remains in the same major version.

In order to answer these research questions, we applied

ARCADE to a total of 572 versions of 14 Apache open-

source systems. The largest versions of these systems range

between 150KSLOC and 800KSLOC. All of these systems are

implemented in Java and managed in the Apache Jira repository.

Table I summarizes each system we analyzed, its application

domain, number of versions analyzed, timespan between the

earliest and latest analyzed version, and cumulative size of all

selected versions.

We applied ARCADE’s workflow depicted in Figure 1 to the

different versions of each system. For each version, ARCADE
produced (1) three recovered Architectures, by ACDC, ARC
and PKG, and the values of Change Metrics. All artifacts

produced in our study are available at [2].

In our analysis of the subject systems, we

leveraged their shared hierarchical versioning scheme:

major.minor.patch-pre-release. A Major version entails

extensive changes to a system’s functionality and typically

results in API modifications that are not backward-compatible.

TABLE I: Subject systems analyzed in our study

System Domain No. of Ver. Time span MSLOC

ActiveMQ Message Broker 20 8/04-1/07 3.40
Cassandra Distributed DBMS 127 9/09-9/13 22.0
Chukwa Data Monitor 7 5/09-2/14 2.20
Hadoop Data Process 63 4/06-8/13 30.0
Ivy Dependency Manager 20 12/07-2/14 0.40
JackRabbit Content Repository 97 8/04-2/14 34.2
Jena Semantic Web 7 6/12-9/13 3.50
JSPWiki Wiki Engine 54 10/07-3/14 1.20
Log4j Logging 41 01/01-6/14 2.40
Lucene Search Engines 21 12/10-1/14 4.90
Mina Network Framework 40 11/06-11/12 2.30
PDFBox PDF Library 17 2/08-3/14 2.70
Struts2 Web Apps Framework 36 10/06-2/14 6.70
Xerces XML Library 22 3/03-11/09 2.30

Total 572 01/01-6/14 118.3

A Minor version involves fewer and smaller changes than a

major version and typically ensures backward-compatibility

of APIs. A Patch version, also referred to as a point version,

results from bug fixes or improvements to a system that

involve limited change to the functionality. A Pre-release

version, which can be classified as alpha, beta, or release

candidate (RC), usually contains new features and is provided

to users before the official version (major or minor) to get

feedback.
This shared versioning scheme enabled us to make certain

comparisons despite the differences among the systems and

their numbers of versions. However, different systems follow

different release evolution paths (recall Section III). Deter-

mining the accurate evolution paths for each system turned

into an unexpected, non-trivial challenge. For example, in

one system, version 1.2.0 may represent a direct evolution

of version 1.1.7; in another system, 1.2.0 may represent a

completely new development branch. In order to determine the

correct version sequences in our subject systems, we relied

on git-log [3] and svn-graph-branches [7]. We then manually

analyzed, and if appropriate updated, the results of those tools

to ensure the accuracy of the suggested evolution paths.
In this process, we identified three frequently-occurring

patterns that affected our selection of version pairs and

evolution paths. In a number of cases, a minor version directly

evolved from a previous minor version, rather than from

a numerically more proximate patch version. Similarly, a

new major version frequently evolved from a minor version,

rather than from a numerically more proximate patch version;

however, changes in patch versions would be merged at a

later time. Lastly, the evolution paths for patch and pre-release

versions typically followed the numeric ordering of their version

numbers.
The evolution paths we selected in our study contain the

four types of versions (Major, Minor, Patch, and Pre). In the

case of major versions, we decided to consider two separate

evolution paths because that allowed us to uncover different

aspects of a system’s evolution:

1) The evolution path involving all changes from the start

of one major version to the start of the subsequent

major version (e.g., the version pair (1.0.0,2.0.0)). This

evolution path represents the totality of changes a system

undergoes within a single major version (hence we refer

to it as Major below).

2) The evolution path involving a single version pair that

comprises the last minor (or patch) version within a major

version and the next major version (e.g., the version pair

(1.9.0,2.0.0), where there are no other system versions

between the two). This evolution path represents the degree

of change to the system at the time the developers decide

to make the “jump” to the next major version. We refer

to this evolution path as MinMaj.
As an example of selected version pairs and evolution paths,

consider the following set of versions obtained from the same

system: 1.0.0, 1.1.0, 1.1.1, 1.2.0, 1.2.1, 1.2.2, 2.0.0-beta1,

2.0.0-beta2, and 2.0.0. For the Major evolution path, only the
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TABLE II: Average a2a values between versions; the bottom-most row is the average-of-averages. Value unit is percentage.

Lower numbers mean more change. Empty table cells indicate versions that do not exist for a given system.

ACDC ARC PKG

System Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre

ActiveMQ 62 69 95 100 99 59 63 91 99 96 62 71 94 100 98
Cassandra 42 80 77 99 99 37 79 72 98 97 36 79 74 99 99
Chukwa - - 78 - 95 - - 73 - 92 - - 79 - 94
Hadoop 17 73 86 98 - 13 70 87 97 - 14 81 91 100 -
Ivy 50 67 91 98 99 29 56 84 91 97 35 57 89 98 99
JackRabbit 38 76 84 91 98 29 77 87 99 95 30 82 92 100 99
Jena - - 88 99 - - - 84 93 - - - 94 99 -
JSPWiki 18 30 86 98 99 7 21 76 98 99 8 13 87 99 100
Log4j 9 13 64 97 85 3 5 66 94 86 1 2 61 98 91
Lucene 12 8 96 98 94 8 7 97 100 93 1 1 97 99 90
Mina 28 30 92 99 88 14 14 93 99 84 13 13 98 100 86
PDFBox - - 97 97 - - - 91 99 - - - 97 100 -
Struts2 - - 90 99 - - - 91 99 - - - 93 99 -
Xerces 21 54 92 83 - 16 52 88 83 - 15 63 91 90 -

AVG 30 50 87 97 95 21 44 84 96 93 21 46 88 98 95

pair (1.0.0,2.0.0) is in the path, as expected. On the other hand,

for the MinMaj evolution path, (1.2.0,2.0.0) is in the path for

this system, rather than (1.2.2,2.0.0). The Minor evolution path

contains (1.0.0,1.1.0), as expected, but instead of (1.1.1,1.2.0)
it contains (1.1.0,1.2.0). The Patch evolution path consists of

the pairs (1.1.0,1.1.1), (1.2.0,1.2.1) and (1.2.1,1.2.2). Finally,

the Pre-release path includes (2.0.0-beta1,2.0.0-beta2) and

(2.0.0-beta2,2.0.0).
In addition to excluding minor and patch versions, as in the

above example, in a limited number of cases we also excluded

a major version along with all of its associated minor, patch,

and pre-release versions. That occurred when a major version

was actually an entirely different development branch from

the system’s other major versions. For instance, Struts 1 and

Struts 2 [6] have been developed independently and comparing

their architectures would yield no useful information from the

perspective of architectural change. In this case, we selected

Struts 2 for our study since it provided a richer set of minor,

patch, and pre-release versions.

V. RESULTS

To shed light on the four research questions about archi-

tectural change, we leveraged ARCADE to compute the a2a
and cvg metrics (recall Section II-A). For each version pair

within each evolution path of a system (recall Section III),

we computed these metrics using the three architectural views

produced by ACDC, ARC, and PKG. Table II shows the average

a2a values and Table III the average cvg values for each system.

Empty table cells indicate comparisons of versions that are

invalid or cannot be determined. For example, if a software

system has only one major version, architectural change values

for Ma jor and MinMa j cannot be computed. We discuss our

findings for each of research question below.

A. RQ1: Architectural Change at the System-Level
To study RQ1, we leveraged a2a, which allows us to compute

architectural change at the system-configuration level. Table

II shows average a2a values for the five different types of

evolution paths we selected across the three architectural views.
We observed a consistent trend for system-level architectural

change among the three views. The a2a similarity values for

the Major and MinMaj evolution paths are lower than for

the remaining three types. This means that most significant

architectural changes tend to involve major system versions.

Although the differences among the values in the Minor, Patch
and Pre columns are small, we can see a prevalent overall trend:

a2aPatch > a2aPre > a2aMinor > a2aMinMa j > a2aMa jor. This

observation is expected: as discussed earlier, patch versions

usually come with bug-fixes, minor versions usually come with

new features, and pre-release versions are wait-for-feedback

versions of a minor or major version which usually require

more changes than patch versions.

Differences between the a2aMinMa j and a2aMa jor values for

a given software system reflect different aspects of change

that has occurred both within and across that system’s major

versions. For example, in the case of Hadoop, a2aMinMa j is 73%

while a2aMa jor is 17%. Hadoop had more than twenty minor

versions between versions 0.1.0 and 0.20.x, before releasing

version 1.0.0 [4]. We consider 0.1.0 to be Hadoop’s first major

release since it is, in fact, Hadoop’s very first release. As a

result, the architectural gap between version 0.1.0 and 1.0.0 is

expected to be very large, yielding a low a2aMa jor value. On

the other hand, changes between the last minor version and the

subsequent major version that is derived from it (i.e., for the

version pair (0.20.0,1.0.0)) are comparatively small, resulting

in a relatively high a2aMinMa j value.

This need not always be the case, however. There are

situations where the architectural changes between consecutive

minor versions within a single major version “cancel out” one

another (e.g., when developers decide to revert their changes).

In such cases, the a2aMinMa j value may be much closer to, or

even lower than, a2aMa jor. We will revisit this issue in Section

V-D, when discussing RQ4.

Similarly, we have found situations where the architec-

tural changes that occur between pre-releases surpass those

that occur between minor versions. For example, in Log4j,

a2aPre(1.3-alpha6, 1.3-alpha7) is lower (49% for ACDC, 45%

for ARC, 48% for PKG) than Log4j’s corresponding a2aMinor
values (see Table II).

Obtaining the consistent trends across the recovered archi-

tectural views that are shown in Table II at times required that
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TABLE III: Average cvg values between versions; the bottom-most row is the average-of-averages. Value unit is percentage.

Lower numbers mean more change. Empty table cells indicate versions that do not exist for a given system.

ACDC ARC PKG

Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre
System (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s)

ActiveMQ 28 19 61 48 95 92 100 100 99 99 36 26 55 52 89 84 99 99 94 91 33 27 60 67 96 93 100 100 100 97
Cassandra 5 4 59 53 52 46 98 99 98 98 35 17 73 63 63 53 96 95 93 93 29 18 77 69 69 60 98 100 99 99
Chukwa - - - - 63 54 - - 86 86 - - - - 54 44 - - 72 72 - - - - 76 67 - - 93 93
Hadoop 0 0 54 46 83 74 95 98 - - 20 2 72 51 81 75 95 95 - - 0 0 54 46 95 85 100 99 - -
Ivy 6 4 46 45 67 57 100 96 100 96 5 3 48 41 48 39 80 78 92 91 14 11 48 46 81 65 100 97 100 97
JackRabbit 16 7 53 57 87 81 98 97 96 96 41 13 64 63 83 76 98 98 91 90 28 12 65 73 93 86 99 98 98 98
Jena - - - - 81 74 96 96 - - - - - - 79 75 89 89 - - - - - - 97 93 99 99 - -
JSPWiki 0 0 0 0 38 35 85 84 98 98 0 0 38 7 43 32 88 85 98 98 0 0 25 5 63 51 97 96 100 100
Log4j 0 0 0 0 29 21 94 93 85 82 6 1 4 1 56 40 86 83 79 76 0 0 0 0 69 54 99 97 92 88
Lucene 0 0 0 0 87 84 98 98 99 99 0 0 0 0 95 94 99 99 84 89 0 0 0 0 88 85 99 99 70 89
Mina 4 2 4 2 78 78 99 99 87 80 10 6 10 6 83 83 98 98 80 76 8 4 8 4 96 96 97 96 91 83
PDFBox - - - - 94 92 95 94 - - - - - - 86 83 96 95 - - - - - - 97 97 98 97 - -
Struts2 - - - - 79 83 96 96 - - - - - - 77 77 94 94 - - - - - - 91 95 98 98 - -
Xerces 0 0 20 16 83 81 86 83 - - 11 3 24 19 83 78 84 80 - - 7 3 20 10 85 83 90 88 - -

AVG 6 4 30 27 72 68 95 95 94 93 16 7 39 30 72 66 92 91 92 91 13 8 36 32 85 79 98 97 94 94

we manually adjust the inputs into two of the three architecture

recovery techniques. Namely, in several instances we observed

that ARC (the semantics-based view) provided a significantly

better insight into architectural change than ACDC and PKG
(the structure-based views). Inspection of our subject systems’

source code uncovered that, in some systems (e.g., Log4j,

Lucene), developers decided to change the root package name

when releasing a new major version. Since ACDC and PKG
rely directly on the package structure of the system, such an

architecturally inconsequential change caused them to return

exceptionally low a2a values. On the other hand, ARC performs

clustering based on topic models of systems, and changing

package names had no effect on its accuracy.

Although PKG performed significantly better at the system

level than at the component level (see Section V-B), our analysis

of the a2a metric’s results provided the first indication that

PKG may not always accurately reflect architectural change.

Namely, the a2aPatch values for the architectures suggested by

PKG are uniformly very high (98-100%). On the one hand, this

is explained by the observation that changes in patch versions

are usually confined to one or at most a few existing packages.

On the other hand, this suggests a simple scenario under which

PKG falters: if developers put all of the, arbitrarily many, new

features of a system’s new minor or major version into a small

subset of the system’s packages, PKG will still indicate only

small, if any, architectural changes.

B. RQ2: Architectural Change at the Component-Level

To understand architectural change at the level of individual

components, we relied on ARCADE’s cvg metric. In the results

reported here, we set the threshold thcvg (recall Section II-A) to

67%. We experimented with several thcvg values, and 67% gave

us the most intuitive result. This setting allows ARCADE to

treat two clusters as different versions of the same cluster, while

allowing a reasonable fraction of the new cluster’s constituent

code elements to change. Table III depicts average cvg values

for architectures recovered by ACDC, ARC, and PKG. As in

the case of a2a, these values are computed for Major, MinMaj,
Minor, Patch, and Pre-release version pairs. Average cvg values

are computed for each version pair (s, t), which obtains the

percentage of extant components, and its inverse (t,s), which

allows us to determine the extent to which new components

were added to a version.

The cvg values for a version pair and its correspond-

ing inverse pair shared the same general trend, across all

three recovery techniques, that we observed with a2a values:

cvgPatch > cvgPre > cvgMinor > cvgMinMa j>cvgMa jor. However,

individual version pairs and their inverses were notably

dissimilar in some cases. For example, across the four major

versions of ActiveMQ, ACDC yielded cvgMinMa j(s, t) = 61%

and cvgMinMa j(t,s) = 48%. This means that a newly introduced

major version retained 61% of the immediately preceding

minor version’s components. In turn, this comprised only

48% of the new major version’s components due to the

system’s increase in size; the remaining 52% were newly

introduced components. In other words, ActiveMQ grew by an

average of 27% (cvgMinMa j(s, t)/cvgMinMa j(t,s)) in the number

of components during the introduction of a new major version.

Overall, the differences between the average cvg values for

version pairs and their inverses across all subject systems (the

AVG row in Table III) ranged between 0% (Patch versions in

ACDC) and 9% (MinMaj versions in ARC).

All three recovery techniques show extensive component-

level change at the Major and MinMaj levels. Conversely,

all three show significant stability at the Minor, Patch, and

Pre-release levels. However, the results yielded by analyzing

ARC’s recovered architectures are notably different from, both,

ACDC and PKG. First, both PKG and especially ACDC tended

to under-report the degree of component-level similarity of

architectures between major version pairs. In several cases,

the two techniques yielded no similarity (the 0% values in

Table III) even though a manual inspection of the corresponding

versions suggested that some component-level similarity was,

in fact, preserved. While ARC also yielded very low values

for the same cases, in most of those cases it did, accurately,

maintain some component-level similarity. The reason for this

is that both ACDC and PKG rely on the system’s structural

dependencies and are significantly affected by changes that span
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most or all of the system’s implementation packages. On the

other hand, ARC’s reliance on the information contained in the

system’s implementation elements, rather than on the relative

organization of those elements, made it less susceptible to

misinterpreting the large system changes that typically happen

at the Major and MinMaj levels.

An analogous argument explains why ARC yields lower

component similarity values for the Minor, Patch, and Pre-

release levels: ACDC and especially PKG fail to recognize large

architectural changes to system components if those changes

are confined within a package or a small number of packages.

C. RQ3: System-Level vs. Component-Level Change

While the discussion of RQ1 and RQ2 indicated that

architectural change followed the same general trends in

our subject systems at the overall-structure and individual-

component levels, the extent of that change differed. We can

see significant differences between the a2a and cvg metrics.

Furthermore, these differences steadily grow from Patch and

Pre-release versions, where the two metrics return virtually

identical values, to Major versions, where the cvg values are

notably lower (e.g., see the AVG rows in Tables II and III).

For example, all three architecture recovery techniques yielded

0% cvg values for JSPWiki’s Major versions; none of them

did so in the case of a2a.

Another revealing example is Lucene. Lucene may be

thought of as a catalog of multiple information retrieval systems

that have historically been added to and removed from it. For

example, the Solr project was initially developed by CNET

Networks, and later released as an open-source project and

merged with the Lucene code base [5]. Due to this nature of

Lucene, it has tended to undergo a lot of significant changes

before the release of a new major version. Although some

parts of the system structure would be maintained (indicated

by a2aMa jor and a2aMinMaj), Lucene’s components changed

significantly (both cvgMa jor and cvgMinMa j are 0% across all

three recovery techniques).

We note that the growth of divergence between the a2a and

cvg values from Patch and Pre-release versions at one end of the

spectrum to Major versions at the other end is more pronounced

in the case of ACDC and PKG than in the case of ARC.

This is another indicator that the two structure-based recovery

techniques are indeed much better equipped to track system-

level than component-level architectural changes. Additionally,

the consistently higher a2a values that both techniques yield as

compared to ARC suggests that they tend to overestimate the

actual architectural similarity of versions at the system level.

To illustrate the overestimation of architectural similarity by

the structural views—ACDC and PKG—as compared to ARC,

Figures 2–4 depict architectural changes among minor versions

of Ivy: Figure 2 depicts the a2a values; Figure 3 depicts the

cvg values for each version pair (s, t); and Figure 4 shows its

inverse, i.e., the cvg values for version pairs (t,s). Note that,

for clarity, we do not depict the MinMaj evolution paths in

Figures 2–4. Finally, the lines connecting the discrete points in

the three figures are intended only to aid visualizing of trends.

Fig. 2: a2a values between minor versions of Ivy

Fig. 3: cvg(s, t) values between minor versions of Ivy

Fig. 4: cvg(t,s) values between minor versions of Ivy

Figure 2 shows that the trends for a2a values involving Ivy’s

minor versions are similar among the three architectural views,

with the ARC values generally slightly lower than the ACDC
and PKG values. However, Figures 3 and 4 show that ARC

reveals significant component-level changes for the same set

of minor versions of Ivy.

To verify these and other similar results, we examined the

changes that occurred in the involved versions. We found

two key reasons for the lower ARC values, particularly at

the component level: (1) class additions and (2) renaming

of classes and variables. Classes were added, e.g., in Ivy’s

versions 0.6.0 and 0.8.0, indicating that the semantics of the

affected components changed. However, these classes were

mostly added to existing packages or components, resulting

in a much smaller change to the architecture’s structure. This

type of semantic change at the component level is precisely

the kind of change that the cvg values for ARC are intended to

highlight. Furthermore, many classes and variables underwent

refactoring across system versions (e.g., from URLDownloader
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to URLHandler in Ivy). These are semantic rather than

structural changes, and are more readily uncovered by ARC
than in either of the structural views.

D. RQ4: Architectural Change in Consecutive Minor Versions
Our finding that major architectural change tends to involve

major system versions was not surprising (although several of

its facets, discussed above, were unexpected). In particular, we

have found that a “jump” to a new major version (MinMaj)
results in significant change, sometimes comparable to the

cumulative sequence of changes experienced by a system across

an entire major version. This can be seen in the MinMaj
results in Tables II and III. These results also indicate that,

on the average, a transition to a new major version involves

more pronounced architectural changes than transitions between

minor versions within the same major version.

TABLE IV: Minimum a2a values between minor versions

System ACDC ARC PKG

ActiveMQ 86 78 84
Cassandra 60 55 49
Chukwa 72 73 76
Hadoop 57 51 72
Ivy 85 65 79
JackRabbit 76 69 74
Jena 83 77 86
JSPWiki 47 55 58
Log4j 62 62 59
Lucene 96 89 90
Mina 93 92 98
PDFBox 87 87 87
Struts2 79 80 83
Xerces 41 37 48

AVG 73 69 75

An interesting question we set out to explore in this study was

whether this is always the case. In other words, can a system’s

architecture experience changes between two consecutive minor

versions that are comparable to the changes between a minor

version and the subsequent major version? To this end, we

conducted an analysis to determine the minimum similarity

among all consecutive minor version pairs within a major

version. Table IV shows the a2a results of that analysis on

architectures produced by ACDC, ARC and PKG.
Several values in the table indicate that considerable archi-

tecture change can indeed occur between two minor versions

(e.g., 47% for ACDC in JSPWiki; 37% for ARC in Xerces;

49% for PKG in Cassandra). In some systems (e.g., Cassandra),

the minimum a2a values between consecutive minor versions

(60% for ACDC; 55% for ARC; 49% for PKG) are lower than

the corresponding MinMaj values (80% for ACDC; 79% for

ARC; 79% for PKG, as shown in Table II). The analogous

analysis involving minimum cvg values shows similar results,

but is elided due to space constraints. The main reason for

this is that developers tended to add a large number of new

features to a new minor version of a system, especially at the

beginning of the system’s life cycle. For example, Xerces more

than doubled in size from version 1.0 to version 1.2, which is

its next downloadable minor version.
Although significant architectural changes do happen be-

tween consecutive minor versions, they are not prevalent and

tend to “cancel out” one another. This is illustrated by the case

of Lucene, whose pair (a2aMajor,a2aMinMaj) is (12%, 8%) for

ACDC and (8%, 7%) for ARC (recall Table II). Looking into the

code history of Lucene, we found that Lucene 3.6.0 contains

packages that support backward-compatibility with versions

3.1.x and 3.3.x. Those packages were subsequently removed

from version 4.0.0. This made a2a(3.0.0,4.0.0) higher than

a2a(3.6.0,4.0.0) for the ARC and ACDC views of Lucene.
This was one of several findings that indicated that software

engineers may be missing a crisply defined, shared intuition as

to how and to what extent a software architecture changes as a

system evolves. Such findings reveal that software developers

may not always understand the architectural impact of their

changes, and also that they do not consider that impact to be

a relevant factor in their versioning scheme.

VI. THREATS TO VALIDITY

We identify several potential threats to the validity of our

results with their corresponding mitigating factors.
The key threats to external validity involve our subject

systems. Although we used a limited number of systems, we

selected them so that they vary along multiple dimensions,

including application domain, number of versions, size, and

time frame. The different numbers of versions analyzed per

system pose another potential threat to validity. This is

unavoidable, however, since some systems simply undergo

more evolution than others. In order to mitigate this threat, we

compared versions against each other based on type (major,

minor, patch and pre-release). Another threat stems from the

fact that we only analyzed Apache systems that use Jira as their

issue repository and are implemented in Java. The diversity

of the chosen systems helps to reduce this threat, as does the

wide adoption of Apache software, Java, and Jira.
The construct validity of our study is mainly threatened by

the accuracy of the recovered architectural views and of our

detection of architectural change. To mitigate the first threat,

we selected the two architecture recovery techniques, ACDC
and ARC, that have demonstrated the greatest accuracy in our

extensive comparative analysis of available techniques [15].

Furthermore, we complemented these techniques with PKG,

which implements an objective measure of a system’s “im-

plementation architecture” [23]. These three techniques are

developed independently of one another and use very different

strategies for recovering an architecture. This, coupled with the

fact that their results exhibit similar trends, helps to strengthen

the confidence in our conclusions. To properly characterize

architectural change between two versions, we created a new

system-level change metric (i.e., a2a) and a new component-

level change metric based on previously validated metric[15]

(i.e., cvg). We have evaluated a2a by applying it on a large

number of scenarios and manually inspecting its results, and

by comparing it to the widely-used MoJoFM metric, especially

in those cases when MoJoFM yielded counterintuitive results.

VII. RELATED WORK

Software evolution has been studied extensively at the code

level, dating back several decades (e.g., Lehman’s laws [24]).
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We will highlight a number of examples that have influenced

our work. Godfrey and Tu [19] discovered that Linux’s already

large size did not prevent it from continuing to grow quickly.

Eick et al. [14] found a reduction in modularity over the 15-

year evolution of software for a telephone switching system.

Murgia et al. [30] studied the evolution of Eclipse and Netbeans

and found that 8%-20% of code-level entities contain about

80% of all bugs. While interesting, informative, and influential

in our work, these studies do not examine the evolution of a

software system’s architecture.

A few studies [12], [31] have attempted to investigate

architectural evolution. These studies are smaller in scope

than our work in this paper. Additionally, unlike ARCADE’s

use of structural and semantic architectural views, only one of

these studies considers more than one architectural perspective—

however, in that study, as well as several others, the chosen

perspectives are arguably not architectural at all. Each study

also differs from our work in other important ways.

D’Ambros et al. [12] present an approach for studying

software evolution that focuses on the storage and visualization

of evolution information at the code and architectural levels.

Their study utilizes a different set of architectural metrics than

ours, specifically targeted at their visualizations.

Nakamura et al. [31] present an architectural change metric

based on structural distance, and apply it to 13 versions of four

software systems. However, they define their metric on class

dependency graphs, therefore measuring change at the level of

a system’s OO implementation rather than its architecture.

A group of studies by Bowers et al. [8], [9], [10] has

treated implementation packages as architectural components

in assessing the usefulness of metrics for balancing the number

of components in a system and for measuring coupling between

components. We considered both of these metrics for inclusion

in ARCADE. We decided against including the balancing metric

because our previous studies [15], [16] have indicated that

ACDC and ARC obtain appropriate numbers of components in

practice. We are currently studying the coupling metric and

assessing its effectiveness in measuring recovered architectures.

Inspired by these studies, we have implemented and included

PKG in our study as well. However, our recent work has shown

that software architects consider the package structure to be

useful but, by itself, an inaccurate architectural proxy [16].

We thus consider the results of Bowers et al.’s studies to be

more indicative of implementation change than of architectural

change. This is consistent with the widely referenced 4+1

architectural-view model [23], in which packages belong to a

system’s implementation view.

VIII. CONCLUSION AND FUTURE WORK

This paper presented the largest empirical study to date

of architectural change in long-lived software systems. The

study’s scope is reflected in the number of subject systems

(14), the total number of examined system versions (572), the

total amount of analyzed code (118.3 MSLOC), the number

of applied architecture-recovery techniques (3) resulting in

distinct architectural views produced for each system, the

number of analyzed architectural models (1716, yielded by the

three recovered views per system version), and the number of

architectural change metrics (3) applied to each of the 1716

architectural models. This scope was enabled by ARCADE, a

novel automated workbench for software architecture recovery

and analysis.

Our study corroborated a number of widely held views about

the times, frequency, scope, and nature of architectural change.

However, the study also resulted in several unexpected findings.

The foremost is that a system’s versioning scheme is not an

accurate indicator of architectural change: major architectural

changes may happen between minor system versions. Even

more revealing was the observation that a system’s architecture

may be relatively unstable in the run-up to a release. We

believe that enabling engineers to spot such instability would

go a long way toward stemming the types of developer habits

that result in unstable, buggy system releases. Finally, our

results further corroborated the observation made in recent

interactions with practicing software architects [16] that the

gross organization of a system’s implementation is, by itself, not

an adequate representation of the system’s architecture. This is

especially magnified in cases where the overall implementation

architecture remained very stable while, in fact, the system

experienced significant growth. For this reason, analyzing a

system’s recovered conceptual architecture, both at the level of

overall structure and at the level of individual components, is

a much more appropriate way of assessing and understanding

architectural change.

Another broad conclusion of our study points to the

significance of the semantics-based architectural perspective.

We encountered multiple instances where a concern-based

architectural view revealed important changes that remained

concealed in the corresponding structure-based views. At the

same time, a significant segment of the research of software

architecture, and in particular the research of architecture

recovery, has focused on system structure. Along with the

results of our recent evaluation of recovery techniques [15],

this suggests that there is both a need and an opportunity for

investigating more effective approaches to architecture recovery.

ARCADE provides a powerful foundation for studying a wide

variety of architectural phenomena as software systems evolve.

Besides including additional subject systems, we are working to

extend ARCADE to support other architectural constructs (e.g.,

component types, software connectors [34], their interfaces,

and their concerns). We are currently complementing the study

described in this paper with an analysis of the decay [33] found

in architectures as they change over time. To this end, we have

recently added six new metrics to ARCADE for measuring

different aspects of architectural decay. We intend to use

the analysis of decay as a springboard for improving our

understanding of the relationship between architectural change

and decay on the one hand, and the reported implementation

issues on the other hand. Our long-term goal is to leverage

ARCADE to enable prediction of architectural decay and major

architectural change based on available implementation-level

information.
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