
39

Lightweight, Obfuscation-Resilient Detection and Family
Identification of Android Malware

JOSHUA GARCIA, MAHMOUD HAMMAD, AND SAMMALEK, Department of Informatics,
University of California, Irvine

The number of malicious Android apps is increasing rapidly. Android malware can damage or alter other files
or settings, install additional applications, etc. To determine such behaviors, a security analyst can significantly
benefit from identifying the family to which an Android malware belongs, rather than only detecting if an
app is malicious. Techniques for detecting Android malware, and determining their families, lack the ability to
handle certain obfuscations that aim to thwart detection. Moreover, some prior techniques face scalability
issues, preventing them from detecting malware in a timely manner.

To address these challenges, we present a novel machine learning-based Android malware detection and
family identification approach, RevealDroid, that operates without the need to perform complex program
analyses or to extract large sets of features. Specifically, our selected features leverage categorized Android
API usage, reflection-based features, and features from native binaries of apps. We assess RevealDroid for
accuracy, efficiency, and obfuscation resilience using a large dataset consisting of more than 54,000 malicious
and benign apps. Our experiments show that RevealDroid achieves an accuracy of 98% in detection of malware
and an accuracy of 95% in determination of their families. We further demonstrate RevealDroid’s superiority
against state-of-the-art approaches.

CCS Concepts: • Security and privacy→ Software security engineering; • Software and its engineer-
ing → Software reliability;

Additional Key Words and Phrases: Android malware, obfuscation, machine learning, lightweight, native code,
reflection

ACM Reference Format:
Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2016. Lightweight, Obfuscation-Resilient Detection and
Family Identification of Android Malware. ACM Trans. Softw. Eng. Methodol. 9, 4, Article 39 (June 2016),
27 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Mobile devices have become ubiquitous, and are still growing quickly. Among such devices, Android
has become the dominant platform and is deployed on hundreds of millions of devices around
the world. With this widespread usage, an increasing number of malware applications (apps)
have been found on such devices and the repositories that distribute mobile apps (e.g., Google
Play). These malware increasingly resemble their counterparts in Desktop PC environments [1, 3],
demonstrating the growing sophistication of mobile malware. Consequently, a significant amount
of effort has been expended on producing techniques to detect Android malware.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2016 Association for Computing Machinery.
1049-331X/2016/6-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 Joshua Garcia, Mahmoud Hammad, and Sam Malek

Existing work on Android malware detection has focused on distinguishing between benign
and malicious apps. A number of these approaches utilize permissions requested or used by an
app to identify Android malware, including through the use of custom signatures [26, 64, 66] or
machine learning [17, 54]. Other techniques identify malicious apps by ranking their riskiness
[32, 42]. Alazab et al. and Adagio [12, 30] use graph structures to identify malware. Other techniques
identify malicious apps by comparing program behavior with other aspects of an app, including
the user interface [34] and app descriptions on app markets [31]. These approaches have made
significant and important steps toward identifying malicious apps from individual devices and app
markets.
Although accurately identifying if an app is benign or malicious is an important step towards

fighting the growing prevalence of malware on Android devices, simply declaring an app as
malicious and removing it is not enough to address the damage it may have done once deployed
[40]. Engineers that assess the impact of amalware appmust determine if other apps, files, or settings
may have been damaged or altered; whether there are any remaining malicious or problematic
services or processes that have been compromised; if any sensitive data has been stolen or leaked;
if any unlawful or illegitimate financial charges have been made due to the malware’s presence; etc.
To make such a determination, a security engineer can significantly benefit from identifying the
specific family to which an Android malware belongs. The family of a malware app can be coarse-
grained (e.g., Trojan, virus, worm, spyware, etc.) or finer-grained, where more specific families (e.g.,
DroidKungFu [65], DroidDream [65], Oldboot [7], etc.) are identified. Knowledge of the family to
which an Android malware belongs can help an engineer determine the specific steps that need to
be taken to mitigate or undo damage caused by the malware.

Complicating the detection and family identification of Android malware are transformations that
obfuscate apps in order to evade detection and family identification by anti-malware software [5, 16,
45]. For example, a variety of malware uses reflection to obfuscate security-sensitive behaviors [44].
A recent study of Android malware obfuscation has demonstrated that simple transformations can
prevent ten popular anti-malware products from detecting any of the transformed malware samples,
even though prior to the transformations those products were able to detect those malware samples
[45]. Thus, malware detection must be designed to defeat these evasion techniques. To achieve this
goal, malware detection techniques can utilize program analyses that focus on the key semantics
and behavior performed by a malware (i.e., behavior as represented by control flow or data flow of
a program), particularly in its interactions with the system APIs and libraries that are external to
the app, rather than just on syntactic aspects of its implementation (e.g., identifier name or string
constants). However, the extent to which recent Android-malware detection techniques are resilient
to modern transformation attacks is not well-understood. Existing studies have largely applied
their techniques to malware that do not use any, or very limited, obfuscation [17, 30, 50, 60]. These
techniques use features that are not resilient to obfuscations. For example, some features utilized
by existing approaches are based on control flow [30, 50], which are susceptible to control-flow
obfuscations (e.g., addition of junk code or call indirection). As another example, features involving
constant strings [17, 60] are susceptible to encryption or renaming obfuscations.

To further reduce Android malware propagation and damage, detection or family identification
of such malware should be scalable. Some state-of-the-art techniques run into scalability issues
and can take hours or up to an entire day to analyze even a single app [18, 34]. Cumulatively,
this delayed analysis can allow Android apps to propagate undetected for a longer period of time
and, thus, cause more damage. Furthermore, it can prevent users from scanning apps directly on
their Android devices, which is important given that Android markets have relatively poor vetting
processes [23, 66]. Consequently, it is desirable to utilize features that can be extracted efficiently
for detection and family identification of Android malware apps, even obfuscated ones.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:3

In this paper, we introduce RevealDroid, a lightweight machine learning-based approach for
detecting malicious Android apps and identifying their families. RevealDroid leverages a set of
features selected to achieve obfuscation resiliency, efficiency of analysis, and accuracy. It does not
require complex program analyses (e.g., data-flow analysis [18, 60]) or large sets of features (e.g.,
hundreds of thousands of features [17, 30]), which can lead to scalability problems. More specifically,
our selected machine-learning features are based on Android-API usage, including resolution of
APIs invoked using reflection, and function calls (e.g., system calls) made by native binaries within
an Android app. No previous work has included native-code feature extraction to detect malware.
Including features based on reflection and native code significantly aids RevealDroid with achieving
obfuscation resiliency.

RevealDroid is capable of accurately detectingmalicious apps with a 98% accuracy, and identifying
their families with a 95% accuracy, in under 90 seconds on average. RevealDroid can maintain high
accuracy even for obfuscated apps. We evaluate RevealDroid’s detection and family identification
accuracy by comparing its ability to correctly identify malware and classify its family on a dataset
of over 24,600 benign apps and over 30,000 malicious apps from two different malware repositories.
We further compare RevealDroid’s detection and family-identification accuracy against state-
of-the-research approaches: Adagio [30], Drebin [17], and MUDFLOW [18], both of which are
approaches formalware detection; andDendroid [50], an approach formalware-family identification.
RevealDroid has an overall greater accuracy by about 11%-25% and mislabels 25%-54% fewer benign
apps as malicious than MUDFLOW; RevealDroid achieves up to 23% greater accuracy than Adagio
and up to 60% greater accuracy than Drebin. Additionally, RevealDroid achieves a 24%-70% higher
classification rate than Dendroid.

This paper makes the following contributions:
• RevealDroid demonstrates that highly lightweight analyses that extract API-based features—
including those based on reflection—and native code features combined with machine learn-
ing, can achieve high accuracy, scalability, and obfuscation resiliency.

• We construct an updated dataset of over 27,900 malware apps labeled with their 447 malware
families and assess RevealDroid’s family-identification accuracy on that dataset. We make
this updated dataset available for researchers and practitioners [4].

• To evaluate RevealDroid’s obfuscation resiliency, we apply several transformations tomalware
apps in order to obfuscate them and assess our ability to detect and identify families of those
transformed apps. Using these transformed apps, we compare RevealDroid’s accuracy for
detection against Adagio, Drebin, and MUDFLOW, and for family identification against
Dendroid. We also make the transformed dataset available online [4].

• We assess the efficiency of RevealDroid’s feature extraction and machine-learning clas-
sification. We show that RevealDroid’s features can be more than 13 times faster than
information-flow feature extraction—which are features used in a variety of Android mal-
ware detection tools [18, 60, 62]—while still exhibiting obfuscation resiliency and accuracy.
We further demonstrate that RevealDroid can produce classifiers efficiently, as compared to
other state-of-the-research tools.

The remainder of this paper is structured as follows. Section 2 introduces RevealDroid and its
design. Section 3 covers our evaluation design, the research questions we study, evaluation results,
and RevealDroid’s limitations. The last sections cover work related to RevealDroid (Section 4), and
conclude the paper (Section 5).

2 REVEALDROID
Malware detection and family identification can be placed into two categories: signature-based and
machine learning-based [60]. For signature-based methods, security engineers must produce (often,

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:4 Joshua Garcia, Mahmoud Hammad, and Sam Malek

manually) specifications that match against key properties of a malware family. For learning-based
classification, techniques utilize machine learning to automatically determine whether an app is
benign or malicious. Each Android app is an instance represented by features used to distinguish
between apps supplied to learning algorithms (e.g., Android API methods or permissions used). A
dataset is a set of instances along with their features.

To classify Android apps as benign, malware, or a specific malware family, we leverage supervised
learning algorithms. For supervised learning, each instance is given a label; in the case of malware
detection, the labels chosen are often simply “benign” or “malicious”. The dataset is split into a
training and testing set. A learning algorithm is applied to the training set in order to produce a
classifier, which can then label apps as “benign” or “malicious”. The testing set is passed as input to
the classifier to assess its accuracy.
Signature-based methods are highly reliable for detecting known malware, but are often con-

structed manually and unreliable for detecting variants of known malware or zero-day malware.
Learning-based methods require a sizeable dataset and properly selected features to ensure accu-
racy, but are more likely to generalize in their findings, making them particularly well-suited for
identifying variants of knownmalware or zero-day malware. In this paper, we utilize learning-based
methods.

To properly leverage learning-basedmethods, wemust select features that are likely to distinguish
both benign apps frommalicious ones and different families of malware apps (e.g., DroidDream from
DroidKungFu). Android malware detection and family identification can benefit significantly from
the utilization of the Android platform itself to represent features of apps. In particular, the Android
API methods, the system calls, and other low-level library calls invoked by an Android app vary
significantly between malware families, in order to perform different types of malicious behavior
(e.g., sending SMS messages to premium-rate numbers, stealing location and identifier information,
acting as a bot, listening for different activation triggers, etc.). We leverage this insight about
distinguishing between and identifying Android malware to design an approach for classifying
Android malware families. By focusing on framework-, system-, and library-level invocations,
which in different combinations tend to be malicious or benign, RevealDroid is capable of achieving
obfuscation resilience.

In the rest of this section, we discuss the features utilized by RevealDroid, the labeling of apps and
RevealDroid’s use of supervised learning to produce classifiers for detectingmalware and identifying
their families, and other features we considered but ultimately excluded from RevealDroid.

2.1 Features Chosen for Learning
To construct RevealDroid, we explored a variety of statically extractable features, both those
previously used by other researchers and novel ones. Our goal when designing RevealDroid is to
select features that meet three criteria: accuracy since anymalware detection or family identification
should be as correct as possible; efficiency, in order to quickly detect malware and its malicious
behaviors before it propagates widely; and obfuscation resiliency to address different ways malware
may evade detection. No malware detection or family identification technique is obfuscation proof,
i.e., capable of identifying malware or its family for all possible evasion techniques. However,
RevealDroid’s aim is to be resilient to as many obfuscation techniques as possible.
To achieve accuracy, efficiency, and obfuscation resiliency, RevealDroid contains the following

four types of features: package-level Android API usage (PAPI), method-level Android API usage
(MAPI), reflection, and native code.We describe each of these features in more detail in the following
paragraphs.
Android API invocations or accesses have been used as features [17, 54]. MAPI features in our

formulation are the number of invocations of a specific Android API method. An example of a

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:5

MAPI feature value is simply the number of times TelephonyManager.getSimNumber() is invoked.
Categorization of API usage has been shown to be useful in previous malware detection work [18].
To obtain categories of APIs, we simply used PAPI features since packages are specified by Android
framework developers themselves.

Increasingly, Android malware are relying on reflection, i.e., the ability of a program to modify
or inspect itself at runtime, in order to perform malicious behaviors or obfuscate such behaviors
[43]. At the same time, benign apps utilize such behaviors to perform legitimate operations (e.g.,
update an app with the latest features or bug fixes without having to re-install the entire app). Due
to the increasing prevalence of reflection, we included it as part of RevealDroid. Furthermore, given
that obfuscating the target (e.g., method or field) of a reflective call is an indicator of suspicious
behavior, it is possible—as our evaluation will demonstrate—to identify malicious reflective usage
without needing to fully resolve all reflective calls.

An Android app can use native code to improve the performance of the app, which is often
used for games, or to make use of shared native libraries. However, malware authors can utilize
native binaries to package exploits, hide behavior from anti-malware techniques that do not scan
native binaries, or perform other malicious functionalities [65]. Native code is often ignored as part
of Android malware analysis, especially if that analysis is static. Consequently, we included it in
RevealDroid.

2.2 Labeling and Classifier Selection
Through supervised learning, RevealDroid aims to utilize the aforementioned features to determine
which combinations of them indicate malicious behavior and the specific family most likely to
exhibit that behavior. As a result, RevealDroid can detect whether an app is benign or malicious, or
determine the family to which a malware belongs. RevealDroid can produce different classifiers
to perform these functions. The classifier constructed by RevealDroid depends on the labels used
when the classifier is trained.

To that end, RevealDroid can build multiple n-way classifiers, where n is the number of labels for
Android apps. To detect whether an app is malware, the training set of Android apps can simply
contain n = 2 labels: benign or malicious. For malware family identification, the number of labels
correspond to the number of malware families in the training set. For example, Android Malware
Genome contains 48 malware families, resulting in n = 48 for a malware classifier trained on
Malware Genome. Given that SVMs (Support Vector Machines) are inherently two-way classifiers
[15], we select a linear SVM for malware detection. For family identification, RevealDroid produces
a CART (Classification and Regression Trees) classifier [20], which is a type of decision tree classifier
that handles multiclass classification effectively [15]. We demonstrate the efficacy of our choice of
classifiers in Section 3.
The number of labels for family identification significantly increases the difficulty of correctly

labeling an Android app, as compared to the 2-way classification when distinguishing between
benign and malicious apps. Nevertheless, as our evaluation results will demonstrate, RevealDroid
is capable of achieving high accuracy for identifying families of malicious apps.

2.3 Android API-Usage Extraction
The Android API contains security-sensitive functionality (e.g., sending SMS messages, and access-
ing private repositories or location information). We leverage two means of representing Android
API usage: the number of Android API method invocations, representing MAPI features, and the
number of method invocations for specific Android API packages, representing PAPI features. For
example, in the case of PAPI, android.account provides APIs for handling account information;
android.media contains APIs for managing media interfaces to audio and video. These features

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:6 Joshua Garcia, Mahmoud Hammad, and Sam Malek

have been shown to be useful for distinguishing malware families when manually specifying their
signatures [27]. Consequently, we chose to include such features for detecting and identifying
families of Android malware using machine learning.
To that end, we built the Android API-Usage Extractor, which determines the number of API

invocations per Android package and the number of invocations per Android API method. As an
example of the number of package-level invocations, if three methods of classes in the android.
telephony package are invoked, then the feature corresponding to that package obtains a value of
3. Formally, the feature vector PAPIa = (p1, ...,pi , ...,p |P |), where pi = |{m •m ∈methodPkдs(i)}|,
P is the set of Android API packages,methodPkдs(i) are the set of methods in package i , andm is
an invocation of a method in an Android app a.
To illustrate how such features can help distinguish malware families, Table 1 depicts features

from three Android malware families. Each feature is denoted by a package name within the
android.* top-level Android API package. For example, in Table 1, jSMSHider accesses sqlite APIs
twice and the telephony package 8 times. The table shows that a supervised learning algorithm
can determine that Geinimi samples access location APIs significantly more than jSMSHider or
BaseBridge. The learning algorithm can also determine that both jSMSHider and BaseBridge access
the telephony and sqlite packages. However, jSMSHider accesses telephony packages more than
BaseBridge does; and BaseBridge accesses sqlite packages more than telephony packages.

Table 1. Example package API features from known Android malware families

telephony location sqlite Fam

mal1 8 0 2 jSMSHider
mal2 0 12 0 Geinimi
mal3 2 0 7 BaseBridge

In the case of method-level invocations, if telephony.TeleMgr.listen is invoked by an app
twice, then thatmethod obtains a value of 2. Formally, the feature vectorMAPIa = (m1, ...,mi , ...,m |M |),
wheremi = |{m}|, M is the set of Android API methods,m is an invocation of a method µ ∈ M .
Table 2 depicts the example in Table 1 where packages are expanded into methods.

Table 2. Example method-level API features from known Android malware families

telephony.TeleMgr.listen location.LocMgr.rmUpdates location.LocMgr.reqLocUpdates sqlite.Db.execSQL Fam

mal1 8 0 0 2 jSMSHider
mal2 0 6 6 0 Geinimi
mal3 2 0 0 7 BaseBridge

2.4 Reflective Feature Extraction
A type of feature often ignored by existing Android malware detection and classification techniques
are those that involve reflection and, as a result, dynamic class loading. Dynamic class loading
through reflection allows an app to modify or inspect itself during runtime, and violate certain
language constructs related to information hiding (e.g., allow access to the private members of a
class). At the same time, Android malware are increasingly utilizing reflection to obfuscate their
malicious behaviors [43]. To address this issue, RevealDroid extracts statically attainable information
about reflection. Specifically, RevealDroid determines if a method is reflectively invoked, and the
extent to which reflective APIs are used. RevealDroid further separates reflective invocations into
three categories [39]:

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:7

• fully resolved: Both the reflectively invoked method and class names (e.g.,
TelephonyManager.getSimNumber()) can be statically determined;

• partially resolved: Only the invoked method name (e.g., getSimNumber()) can be statically
determined

• unresolved: Neither the method name nor the class name can be determined statically (e.g., a
non-constant string provided as input during runtime).

Partially extracted reflective invocations occur in cases where non-constant strings, or inputs, are
used as target methods of a reflective call. Additionally, as we have observed in Android malware,
a high number of unresolvable, reflective method invocations (e.g., reflective calls whose target is
encrypted) tend to be malicious. Although reflection enables useful abilities, such as allowing an
app to update itself so that users can have the latest features or bug fixes, reflection when used in
excess is a strong indicator of malicious behaviors.

Reflective invocation of a method, for both constructor and non-constructor methods, occurs in
three stages: (1) class procurement (i.e., a class with the method of interest is obtained) (2) method
procurement (i.e., the method of interest to be invoked is identified), and (3) the method of interest
is actually invoked. Reflection Extractor attempts to identify information at each stage for the three
types of reflective invocations described above.

1 ClassLoader cl = MyClass.getClassLoader ();

2 try { Class c = cl.loadClass("MyActivity");

3 ...

4 Method m = c.getMethod("onPause" ,...);

5 ...

6 m.invoke (...); }

7 catch { ... }

Fig. 1. Simple reflective method invocation example

A simple example, based on those found in real-world apps, of reflective method invocation,
not involving constructors, is depicted in Figure 1. In this example, a ClassLoader for MyClass is
obtained (line 1), which is responsible for loading classes. The MyActivity class is loaded using that
ClassLoader (line 2). The onPause callback of MyActivity (line 4)—which pauses a component
that has been running—is retrieved and eventually invoked using reflection (line 6). Apps that try to
alter the standard Android lifecycle, by invoking callbacks, are indicators of potentially malicious
behaviors. Furthermore, any security-sensitive behavior invoked using reflection is, at the least,
suspicious.
Our analysis identifies reflectively invoked methods using a backwards analysis. That analysis

begins by identifying all reflective invocations (e.g., line 6 in Figure 1). The analysis currently does
not consider the various different parameters or arguments that can be passed to a method invoked
reflectively. However, it does track the number of times a particular method is reflectively invoked,
which is used as a feature for supervised learning.

Next, the analysis follows the use-def chain of the invoked java.lang.reflect.Method in-
stance (e.g., m on line 6) to identify all possible definitions of the Method instance (e.g., line 4).
Our analysis considers various methods that return Method instances, i.e., using getMethod or
getDeclaredMethod of java.lang.Class. The analysis then records each identified method name.
If the analysis cannot resolve the name, this information is also recorded.
At that point, the analysis attempts to identify the class name that is being invoked. Similar to

the resolution of method names, the analysis follows the use-def chain of the java.lang.Class
instance from which a java.lang.Class is retrieved (e.g., following the use-def chain of c on

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:8 Joshua Garcia, Mahmoud Hammad, and Sam Malek

line 4). We model various means of obtaining a java.lang.Class instance. For example, the
class may be loaded by name using a ClassLoader’s loadClass(...) method (e.g., line 2), using
java.lang.Class’s forNamemethod, or through a class constant (e.g., using MyClass.class). The
analysis then records the class name it can find statically, or stores that it could not resolve that
name. Note that our analysis considers any subclass of ClassLoader, including the Android-specific
DexClassLoader that allows dynamic loading of classes stored in the Android Dalvik Executable
format. Our reflection analysis involving constructors works in a similar manner by analyzing
invocations of java.lang.reflect.Constructor and invocations of its newInstance method.
Overall, for the three categories of reflective invocations described previously (full, partial, or

unresolved), the analysis obtains the following feature information for each app: the full or partial
method names invoked; the number of times the full or partial method name is invoked; and the
total numbers of fully, partially, or unresolved reflective invocations. As an example, Table 3 shows
samples of features for a fully resolved method name (SmsManager.sendTextMessage), a partially
resolved one (getSimSerialNumber), and unresolved method names.

Table 3. Sample reflection features from real Android malware apps

SmsManager.sendTextMessage getSimSerialNumber UNRESOLV

mal1 6 0 0
mal2 0 4 0
mal3 0 0 6

2.5 Native Call Extraction
A capability of Android apps that is almost never taken into account is use of native code. In
particular, to the best of our knowledge, no analysis that utilizes machine learning and static
analysis examines the internal behaviors of an app’s native binaries. This allows malware authors
to package malicious payloads in native binaries, since they are largely ignored. To address this
issue, RevealDroid includes a Native Call Extractor (NCE) that records calls (e.g., system calls and
calls to shared libraries) made by a native binary to entities outside of it, and the extent to which
these calls are invoked.

To extract information about security-sensitive invocations in native binaries, NCE must disas-
semble binaries in a popular binary format for Unix-like systems called the Executable and Linkable
Format (ELF). A typical ELF binary, in Android, consists of headers describing meta-data about
the binary (e.g., address format, sections of the binary, memory layout information, etc.). After the
header, the binary file is divided into sections containing code, data, and potentially other extra
information.
To identify malicious behaviors, we focus on calls that the binary may make external to itself

and represent key semantics of security-sensitive behavior. In particular, the NCE extracts system
calls and other calls that the binary makes to external binaries (e.g., shared libraries). While the
main code segment of a native binary on Android is relatively easy to obfuscate (e.g., storing data
at non-standard addresses, or adding dead code), these external calls are not easy to obfuscate,
particularly system calls.

To identify external binary calls, NCE must identify any call within the code segment of a native
binary, and the appropriate assembly instructions that realize a function call. Within an ELF binary
in Android, this information is stored in the Procedure Linkage Table (PLT) of the binary. Simply
put, the PLT is used to determine the address of external functions not known at linking time.
As an example, consider the disassembled PLT section of a native binary containing the Gin-

gerBreak root exploit, shown in Figure 2 and reduced due to space limitations. In that section,

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:9

1 00008b54 <sendmsg@plt >:

2 8b54: e28fc600 add ip, pc, #0, 12

3 8b58: e28cca02 add ip, ip, #8192

4 8b5c: e5bcf61c ldr pc, [ip, #1564]!

5 00008af4 <chmod@plt >:

6 8af4: e28fc600 add ip, pc, #0, 12

7 8af8: e28cca02 add ip, ip, #8192

8 8afc: e5bcf65c ldr pc, [ip, #1628]!

Fig. 2. PLT of a GingerBreak sample

1 99ec: e59d0010 ldr r0, [sp, #16]

2 99f0: e59f13c0 ldr r1, [pc, #960]

3 99f4: ebfffc3e bl 8af4 <chmod@plt >

Fig. 3. Code segment where chmod is invoked

the location of two security-sensitive system calls are identified: sendmsg for sending messages
over sockets (starting at address 8b54), and chmod (starting at address 8af4) for modifying the
permissions of a file. Each sequence of instructions modifies the program counter so that the
machine begins executing at the address of the appropriate system call. For example, lines 2-4 of
Figure 2 first computes an address at which the sendmsg code resides, and then loads that address
to the program counter (pc), so that the code will execute. This binary is stored in the app’s assets/
directory, intended to contain raw resources of an Android app, of the package containing the
archive, and is named gbfm.png to make the file appear to be simply an image. To identify binaries
obfuscated in that manner, NCE scans every file in the package containing the app, i.e., the APK,
and checks the format of the file to see if it matches that of an ELF binary.

To properly identify the binary as an Android ELF file, it must be analyzed using the appropriate
matching Application Binary Interface (ABI), which is the analog of an Application Programming
Interface at the binary level. An ABI defines the manner in which an application’s machine code
interacts with the system or other binaries. Android supports a variety of hardware architectures
(e.g., ARM, MIPS, and x86) built against an Android-specific C library; each of these architectures
use a different ABI. Disassembly and proper identification of the particular ABIs requires use of
the Android toolchain for that ABI. Incorrect selection of an ABI or toolchain (e.g., using standard
GNU ARM disassembly for Android ARM binaries) will result in incorrectly disassembled code,
which may appear to look correct.

Identification of system calls, or other external calls, actually invoked in a binary requires
analyzing the .text section of an Android ELF binary, which contains its executable code. In such
a binary, branching instructions realize invocations of external calls. Specifically, NCE scans the
.text section of every native binary within an Android app for branch, branch with link, and
branch with link and exchange instructions. For each instruction, our analysis determines if the
instruction references a label for a function in the binary’s PLT.

To illustrate, Figure 3 depicts an invocation of the chmod system call. The initial two instructions
prepare the first (r0) and second (r1) arguments that are passed to chmod. The final instruction
invokes chmod using the address of the external call in the PLT (8af4 in Figure 2).
Overall, NCE records each external call of every binary in an Android app, and the number of

times each external call is invoked, which together serve as feature types for supervised learning.
By scanning every binary, our analysis ensures that no code is missed, even if the code is not
invoked using Android’s native code interface. For example, this behavior is common for Android

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:10 Joshua Garcia, Mahmoud Hammad, and Sam Malek

root exploits (e.g., executing the binary by using the Process or Runtime Java classes). An example
of three system call features from three different Android malware apps is depicted in Table 4.

Table 4. Native call features from real Android malware apps

chmod rename unlink

mal1 6 9 13
mal2 4 6 0
mal3 3 0 6

2.6 Other Features Considered
To construct RevealDroid, we explored a variety of statically extractable features, both those previ-
ously used by other researchers and novel ones. Table 5 depicts the various features we considered
in comparison with our three criteria of interest (accuracy, efficiency, and obfuscation resiliency)
but did not include since they did not meet one or more of those criteria. The various features
include the following : Permissions, Component names, and Intent Filters (IFilters) attainable from
an Android app manifest; security-sensitive data Flows; and Intent actions (IActions). ✓indicates the
feature meets the criterion in question; ✘ indicates that it does not. Next, we discuss each feature,
and our reasons for discarding it.
(1) Android manifest properties. An Android application archive (APK), i.e., a compressed archive

containing an installable Android app, is distributed with an XML manifest file that contains a
variety of metadata about an app. Extracting information from a manifest file can be highly
efficient, since it requires simply parsing an XML file. Among the information available in an
app’s manifest file, we considered using the following as features. However, we discard them
due to either not contributing significantly to accuracy or for not being obfuscation resilient, as
demonstrated in previous studies [46].
• Permissions. Before Android 6.0, Android apps needed to request permissions at installation
time. Starting with Android 6.0, users can revoke or grant permissions at app runtime.
However, app permissions are highly granular. Although an app may even request more
permissions than it actually uses, it may simply be requesting extra permissions in anticipation
of its use in future versions.

• App components. A variety of component types, with specific functionalities (e.g., components
for providing GUIs, and others for running background services) are declared within an
Android app’s manifest. However, presence of particular components, especially simply
tracking their name, as conducted by some approaches [46], can be obfuscated easily through
renaming.

• Intent filters. An app’s manifest often declares messages, called Intents, it can receive and
process through filters indicating Intent properties of interest. Although this information can

Table 5. Considered features and desired approach criteria: ✓indicates the feature meets the criterion; ✘

indicates that it does not

Perm Comp IFilters Flows IActions

Acc ✘ ✘ ✘ ✓ ✓

Eff ✓ ✓ ✓ ✘ ✓

Obf ✓ ✘ ✘ ✘ ✘

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:11

be useful for identifying malware (e.g., those that listen for Intents indicating system actions),
an app may simply declare filters in code, allowing for another form of obfuscation.

(2) Security-sensitive data flows. A few approaches for Android malware detection [18, 60] use
data flows between security-sensitive Android interfaces to determine if an app is malicious.
Tracking this form of information is particularly useful for identifying privacy leaks, but can
be computationally expensive to compute [18]. For that reason, we exclude this feature from
RevealDroid. Section 3.6 further examines efficiency issues with such flows. Furthermore, our
experimentation demonstrated that call indirection actually affects data-flow analyses which,
in turn, obfuscates privacy leaks, particularly in the case of family identification [29].

(3) Intent actions. Android malware are known to rely upon tracking the actions of an Intent (e.g.,
whether a package is installed, or if a device has recently completed booting) to determine
when to perform a malicious behavior [27, 65]. In fact, these features are particularly useful for
distinguishing between different malware families. Unfortunately, these features are relatively
easy to obfuscate, due to the fact that Intent actions are stored as strings, which can be encrypted.
In fact, we found that such features can cause a classifier to miss up to 27% of malware obfuscated
using custom encryption transformations [28]. Thus, we exclude such a feature in RevealDroid.

3 EVALUATION DESIGN AND RESULTS
To evaluate RevealDroid, we study its accuracy, efficiency, and resiliency to transformations intended
to obfuscate malware. Furthermore, we compare RevealDroid to another state-of-the-research
Android malware-family identification approach, Dendroid, and three other detection approaches,
MUDFLOW, Drebin, and Adagio. Specifically, we answer the following research questions:

• RQ1: How accurate is RevealDroid for distinguishing between benign and malicious Android
apps in a time-agnostic and time-aware scenarios?

• RQ2: How accurate is RevealDroid for identifying the specific family of a malicious Android
app?

• RQ3: How does RevealDroid’s detection accuracy compare to other detection approaches?
• RQ4: How does RevealDroid’s family identification capability compare to another state-of-
the-research malware-family identification approach?

• RQ5: Which features were selected and account for the detection or family identification
capabilities of RevealDroid?

• RQ6: What is RevealDroid’s run-time efficiency? How does this run-time efficiency compare
to other learning-based approaches for malware detection?

We implemented RevealDroid in Java and Python. To construct the Android API-Usage Extractor
and Reflection Feature Extractor, we leveraged Soot [52], a static analysis framework, and Dexpler
[19], a translator from Android Dalvik Bytecode to Soot’s intermediate representation. For Native
Call Extractor, we utilized the Android ABI toolchain to disassemble binaries and identify Android
ELF binaries, and constructed a custom-built extractor using Python. For machine learning, we
selected Scikit-learn [41], a widely used machine-learning toolkit for Python. For our experiments,
we used a machine with 64 cores and 256GB RAM.

To assess RevealDroid’s accuracy, we constructed a dataset of both benign and malicious Android
apps. To obtain benign apps, we utilized AndroZoo [14], which is a repository of more than 5.5
million apps collected from several sources, including Google Play, the official Android market—and
scanned by commercial anti-malware products from VirusTotal [9], an online service provided by
Google that scans URLs, files, and Android apps to determine if they are malicious or benign. After
scanning the AndroZoo dataset, we found over 24,600 Google Play apps, out of nearly 2 million
apps, that are marked as benign by all 55 anti-malware products.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:12 Joshua Garcia, Mahmoud Hammad, and Sam Malek

We obtained malware samples from four Android malware repositories: the Android Malware
Genome project [65], the Drebin dataset [6], VirusShare [8], and VirusTotal [9]. Malware Genome
contains over 1,200 Android malware apps from 48 different malware families. We utilized 22,592
Android malware samples from VirusShare. We further leveraged 5,538 samples from the Drebin
dataset, which includes the samples from the Android Malware Genome project. The remaining
apps were obtained from VirusTotal.

3.1 RQ1: Detection Accuracy
To answer RQ1, we assess how accurate RevealDroid is for detecting whether an app is benign or
malicious in both time-agnostic and time-aware scenarios. In a time-agnostic scenario, training and
testing as part of machine learning is conducted without considering the age of apps in the dataset.
This scenario has been utilized to evaluate an overwhelming majority of machine learning-based
Android malware-detection approaches [13]. A time-aware scenario uses the modification date of
apps to determine training and testing sets, which avoids training on apps from the future to test
on apps from the past.
To evaluate RevealDroid in a time-agnostic scenario, we utilized our entire dataset of Android

apps. Table 6 depicts results for a 10-fold cross-validation, which includes the following: Precision
indicates the extent to which the classifier produces false positives; Recall shows the extent to
which the classifier produces false negatives; F1 score is the weighted harmonic mean of precision
and recall; the No. of Apps used; averages (Avg.) for precision, recall, and the F1 score; and the Total
number of apps.

Table 6. Detection results for time-agnostic scenario

Prec Rec F1 No. Apps

Benign 98% 97% 98% 24,679
Malicious 98% 98% 98% 30,203
Avg./Total 98% 98% 98% 54,882

The table illustrates that RevealDroid achieves high accuracy across the board, for both benign
and malicious apps, with an average F1 score of 98%. For just benign apps, RevealDroid obtains a
98% F1 score. For malicious apps alone, RevealDroid attains a 98% F1 score. These consistently high
results across multiple measures demonstrates RevealDroid’s ability to detect malicious apps with
high accuracy.
Figure 4 shows the detection results for the time-agnostic scenario as part of a precision-recall

(PR) curve. This PR curve is nearly perfect, as shown by being close to the upper right corner and
having on overall area under the curve (AUC) of .98, where the ideal is 1.00.
To evaluate RevealDroid in a time-aware scenario, we followed the methodology described by

Allix et al. [13]. Specifically, we extracted the modification date of the classes.dex file in each
app’s APK file. classes.dex contains the compiled implementation classes of the app. The date
at which the file is modified allows us to determine the age of the app, which is used to split our
datasets into training and testing.
We split our apps into training and testing for a particular date as follows: For each date, any

apps older than that date are assigned to the training set; the remaining apps are assigned to the
testing set. We selected dates as the first day of each year from 2012-2015. For example, we selected
apps created prior to 1/1/2012 as training, the remaining apps are for testing.

Figure 5 depicts the results obtained for each year with selected dates for splitting from 2012 to
2015. For the first day of 2012, RevealDroid obtains an 87% F1 score and similar results for 2013.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:13

Fig. 4. Precision-recall curve for detection in the time-agnostic scenario

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

Overall AUC=0.98

Fig. 5. Detection results for time-aware scenario

87% 86%

96% 99%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2012 2013 2014 2015

SPLIT	DATE

However, RevealDroid results only improve for the following years to 96% for 2014 and 99% for
2015. These results show that RevealDroid is able to obtain high accuracy, even when the age of
apps is taken into account.
These results are particularly notable since previous work has demonstrated that machine

learning-based Android malware detection was unable to obtain an F1 score higher than 70% in a
time-aware scenario [13]. In that work, dates newer in time resulted in lower F1 scores; however,
RevealDroid actually improves to as high as 99%. Consequently, RevealDroid exhibits a strong
ability to obtain high detection results in both time-aware and time-agnostic scenarios.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:14 Joshua Garcia, Mahmoud Hammad, and Sam Malek

3.2 RQ2: Family Identification
Identifying an Android app as malware is insufficient for dealing with the damage it may cause.
Once a malicious app is deployed, it may install other apps, steal information, modify settings,
etc. Thus, determining the family to which an app belongs can aid engineers and end users with
determining how to deal with the malicious app, besides simply removing it.

Android Malware Genome. To determine RevealDroid’s ability to classify Android malware
apps into families, we assessed RQ2 by utilizing the Android Malware Genome (AMG) [65], which
contains over 1,200 apps and 48 malware families, labeled by other researchers.

Figure 6 depicts a histogram of malware families in AMG. Notice that no family constitutes more
than 25% of the apps in the dataset. Consequently, a naive classifier that labels all samples with the
most frequently appearing label would only obtain an accuracy of 25%. The histogram indicates
that this particular classification task requires a sophisticated classifier.
We used RevealDroid to construct a classifier with 48 different labels, one for each family in

AMG. For this experiment, we conducted a 10-fold cross-validation to assess the accuracy of our
classifier.

On the AMG dataset, RevealDroid’s malware-family classifier obtains a 95% correct classification
rate, far above the 25% correct classification rate for a naive classifier. These results showcase
RevealDroid’s ability to identify a malicious app’s family with high accuracy. This outcome indicates
that our features are well-chosen for discriminating between malware families.
RevealDroid’s classifier did not reach perfect correctness due to a lack of samples for certain

malware families: Malware families with less than 10 samples obtained lower results, since our
cross-validation uses 10 folds. Ideally, when performing a cross-validation by selecting folds, the
number of labels should be greater than or equal to the number of folds.

Expanded Families. To assess RevealDroid’s classifiers’ effectiveness on more recent malware
families, we evaluated those classifiers on a much larger set of malware samples from Drebin,
VirusShare, and VirusTotal. To produce a ground truth of families for malicious apps beyond those
found in AMG, we again leveraged VirusTotal and a tool called AVClass [49], which provides
an algorithm for identifying the malware family label of a malicious app using VirusTotal labels.
We uploaded every sample in our malicious dataset to VirusTotal to obtain labels from all the
anti-malware products on it. These labels are then passed to AVClass which then provides a family
label for each malicious app. If AVClass could identify a family for the malicious app, we utilized it
for this experiment. This process resulted in a dataset of 447 families and 27,979 malware samples.

Figure 7 shows the histogram of the 37 families among the 447 families that contain 100 or more
samples. A random classifier would obtain only about a 0.22% correct classification rate; and a
naive classifier that simply marks every app with the most frequent family label (jifake) would
only obtain a 26% classification rate. As with the AMG dataset, this expanded family dataset poses
a challenging classification problem, requiring a sophisticated classifier.

RevealDroid’s family identification for this set of apps achieves an 84% correct classification rate,
which is far above the 26% classification rate for a naive classifier. This result is particularly useful
given the choice of 447 families to which an individual malicious sample may belong.

Note that a major contributing factor to the accuracy of RevealDroid from this expanded family-
identification experiment is the use of AVClass and VirusTotal labels. These labels are obtained by
an automated technique that relies on (1) heuristics and (2) labels from anti-malware products in
VirusTotal, which often disagree with each other. As a result, those labels are likely less accurate
than the manually curated AMG labels. That lower quality of family labels for AVClass is likely
affecting the correct classification rate of RevealDroid for the expanded family dataset.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:15
Fi
g.
6.

H
is
to
gr
am

of
A
M
G
Fa
m
ili
es

ADRD

AnserverBot

Asroot

BaseBridge

BeanBot

Bgserv

CoinPirate

CruseWin

DogWars

DroidCoupon

DroidDeluxe

DroidDream

DroidDreamLight

DroidKungFu1

DroidKungFu2

DroidKungFu3

DroidKungFu4

DroidKungFuSapp

DroidKungFuUpdate

Endofday

FakeNetflix

FakePlayer

GGTracker

GPSSMSSpy

GamblerSMS

Geinimi

GingerMaster

GoldDream

Gone60

HippoSMS

Jifake

KMin

LoveTrap

NickyBot

NickySpy

Pjapps

Plankton

RogueLemon

RogueSPPush

SndApps

Spitmo

Tapsnake

Walkinwat

YZHC

Zitmo

Zsone

jSMSHider

zHash

Fa
m

ili
es

05010
0

15
0

20
0

25
0

30
0

Frequency

22

18
7

8

12
2

8
9

1
2

1
1

1
16

46
34

30

30
9

96

3
1

1
1

6
1

6
1

69

4

47

9
4

1

52

1
1

2

57

11
2

9
10

1
2

1
22

1
12

16
11

Fi
g.
7.

H
is
to
gr
am

of
Ex
pa

nd
ed

Fa
m
ili
es

AnserverBot

BaseBridge

DroidKungFu3

admogo

adwo

airpush

basebridge

batterydoctor

boxer

domob

dowgin

droiddreamlight

droidkungfu

fakeinst

gappusin

geinimi

ginmaster

iconosys

igexin

jifake

kmin

kuguo

leadbolt

lotoor

mseg

opfake

plankton

secapk

smsagent

smskey

smsreg

umpay

utchi

wkload

wooboo

youmi

zdtad

Fa
m

ili
es

0

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

6,
00

0

7,
00

0

Frequency

18
7

12
2

30
9

37
7

36
2

31
2

33
9

14
0

20
7

19
4

1,
34

6

10
4

77
1

2,
19

8 1,
03

9

12
7

43
8

15
3

11
1

7,
27

7

25
5

1,
20

6

11
0

54
1

15
2

1,
29

9
86

4

20
1

61
7

10
0

1,
01

5

44
2

30
6

19
0

19
5

36
0

17
2

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:16 Joshua Garcia, Mahmoud Hammad, and Sam Malek

3.3 RQ3: Detection Comparison
To assess RevealDroid against state-of-the-research approaches for Android malware detection, we
compared it against three research prototypes: MUDFLOW, Adagio [30], and Drebin [17]. Besides
MUDFLOW, we attempted to obtain state-of-the-research tools, DroidSIFT and Drebin [17], by
contacting their respective authors. Drebin is another machine learning-based Android malware
detection approach. Unfortunately, both tools are unavailable, preventing us from comparing
against them directly. However, in the place of Drebin, its authors suggested we use their other
tool, Adagio, which achieves similar accuracy and efficiency results, and also utilizes machine
learning. Adagio operates by constructing function call graphs and encoding them as features used
for machine learning.
Although the original Drebin implementation is unavailable, we decided to assess the extent

to which Drebin’s features for machine learning are useful for detection of Android malware. In
particular, we selected three key features that are unique to Drebin: network addresses, requested
permissions, and used permissions. Network addresses include URLs, IP addresses, and valid
hostnames. Requested permissions are permissions an app requests at install time; used permissions
are permissions that an app actually utilizes in its code, as determined by static analysis.

For MUDFLOW, we downloaded its implementation and consulted with its authors to verify that
we are using their implementation correctly by re-running MUDFLOW to replicate their results on
their original dataset. We further computed method-level flows from FlowDroid and verified that
we can replicate the high accuracy results from MUDFLOW’s original study on a subset of apps
from their dataset. We performed a similar verification in the case of Adagio and Drebin. Due to
space limitations, we omit a comparison we conducted with 60 commercial anti-virus products.
However, RevealDroid met or exceeded the detection rates of those products. The results of that
comparison are available online [4].

We compared Adagio, MUDFLOW, Drebin, and RevealDroid in the following two scenarios: one
involving only the original untransformed apps, and another involving apps transformed using
DroidChameleon [45, 46], a tool that transforms apps in order to obfuscate them. In the scenario
with no transformed apps, we split a dataset consisting of 7,989 malicious apps and 1,742 benign
apps into a training set that has half of the benign apps and half of the malicious apps; the testing set
has the remaining apps. For the other scenario, the training set consists of 7,995 malicious apps and
878 benign apps; the testing set contains (1) 1,188 malicious AMG apps to which DroidChameleon
transformations are applied, and (2) 869 benign apps. For classifier selection, we used the most
accurate classifiers of MUDFLOW, Adagio, and Drebin.
DroidChameleon transformations are designed to prevent anti-malware tools from detecting

apps to which those transformations are applied. These transformations are based on obfuscations
seen in the wild, and have previously been shown to prevent 10 commercial antivirus products from
detecting the resulting transformed apps [46]. Another alternative obfuscation tool for Android we
considered is ADAM [63]. However, DroidChameleon provides a wider variety of obfuscations, has
composite transformations, and has demonstrated the ability to completely evade anti-malware
detection. We selected apps from the original AMG to assess RevealDroid’s, MUDFLOW’s, Drebin’s,
and Adagio’s obfuscation resiliency. Using AMG allows us to assess both the malware detection
and family identification abilities of RevealDroid for obfuscation resiliency.

Table 7 depicts the sets of transformations we applied: call indirection, where a method invocation
is moved into a new method which, in turn, is invoked in place of the original method; renaming
of classes, where the identifier of classes is changed, which may prevent detection or family
identification that searches for specific class names; and encrypting arrays and strings if they are

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:17

used by an app. We selected these transformations because they have been shown to evade anti-
virus products [46], can be combined to produce stronger obfuscations, and actually result in apps
that are still usable. We manually tested several malicious apps, after applying transformations, to
verify that the obfuscations resulted in runnable, usable apps.

For each malicious app in AMG, we attempted to apply transformation sets in the following
order (ts0, ts1, ts2, ts3), where we try each transformation set in that sequence until a set results in
an installable app. For example, we first attempt to apply ts0 and if that fails we then try ts1. We
continue in that manner until we have tried all four transformation sets.

Table 7. Sets of transformations attempted or applied

Trans.
Set

Call
Indirection

Rename
Classes

Encrypt
Arrays

Encrypt
Strings

ts0 X X X X
ts1 X X X
ts2 X X
ts3 X

Table 8 showcases the Precision, Recall, and F1 score results for each approach and both scenarios,
i.e., without transformations (¬ T) and with transformations (T). For each of those metrics, the
table depicts results for Benign apps and Malicious ones.

Table 8. Detection comparison, where each numeric result is expressed as a percentage1

MUDFLOW RevealDroid Adagio Drebin

¬ T T ¬ T T ¬ T T ¬ T T

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1
Ben 85 34 49 98 47 64 90 88 89 91 72 80 90 76 83 54 73 62 97 100 98 42 100 59
Mal 87 99 93 72 99 84 97 98 98 82 95 88 95 98 96 73 54 62 100 99 100 0 0 0

AVG 86 66 71 85 73 74 96 96 96 86 85 85 92 87 90 63 63 62 99 99 99 18 42 25

Overall, RevealDroid’s classifier outperforms MUDFLOW’s two-way classifier. With no tranfor-
mation, RevealDroid obtains an average F1 score of 96% compared to MUDFLOW’s 71%. For the
obfuscations scenario, RevealDroid obtains an average F1 score of 85% compared to MUDFLOW’s
74%. The reason MUDFLOW’s results improve or remain unchanged overall is likely due to the
fact that transformations applied by DroidChameleon are based on transformations seen in the
wild. Thus, the approach is likely learning about combinations of feature values that indicate
obfuscations.

The most striking difference between MUDFLOW’s and RevealDroid’s results for both scenarios
is each classifier’s recall for benign apps. In the scenario with obfuscations, RevealDroid achieves a
72% recall for benign apps compared to MUDFLOW’s 47%. For benign apps in the other scenario,
RevealDroid obtains a 88% recall compared to MUDFLOW’s 34% recall. These results indicate
that MUDFLOW’s classifier has a strong tendency to mark benign apps as malicious, unlike
RevealDroid’s classifier.

Adagio obtains a 6% lower F1 score than RevealDroid in the scenario with no DroidChameleon
obfuscations. Furthermore, with the DroidChameleon obfuscations, RevealDroid significantly
outperforms Adagio by 23%. This low obfuscation resiliency for Adagio is particularly due to the
1Note that RevealDroid’s accuracy changes from Section 3.1 due to differing dataset sizes and splitting strategies.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:18 Joshua Garcia, Mahmoud Hammad, and Sam Malek

use of call-indirection transformations, which changes the expected call graph that Adagio utilizes
to identify malware.

Drebin obtains a 3% higher F1 score than RevealDroid in the scenario with no DroidChameleon
transformations. However, in the scenario with transformations, Drebin exhibits the least obfusca-
tion resiliency compared to the other approaches, obtaining a 60% lower F1 score than RevealDroid.
The drastic change in accuracy is due to Drebin’s heavy reliance on network addresses, which
account for most of the features utilized by Drebin. Network addresses are constant strings which
are susceptible to identifier renaming and encryption transformations, utilized by DroidChameleon.

In summary, RevealDroid obtains obfuscation resiliency and accuracy for detection, as compared
to three state-of-the-research malware detection approaches.

3.4 RQ4: Family-Identification Comparison
To demonstrate the improvement in accuracy of RevealDroid’s family identification over the state-of-
the-art, we compare RevealDroid against a state-of-the-art Android-malware family-identification
approach, Dendroid [50], which also utilizes machine learning to classify malware. Dendroid uses
features that represent each method of an app as a sequence of typed statements. We contacted the
authors of another approach, DroidSIFT [60], which also identifies families. However, DroidSIFT’s
authors are unable to share their implementation. Consequently, we could not compare against it.
Note that neither MUDFLOW, Adagio, nor Drebin perform family identification.
We closely consulted with the authors of Dendroid to ensure we obtain the most accurate

results using their tool as possible. To that end, we replicated their evaluation and verified the
accuracy of our results with Dendroid’s authors. To compare Dendroid and RevealDroid, we assessed
both approaches using AMG. Specifically, we split AMG apps into a training and testing set of
approximately equal size. Given that 15 families in AMG only have a single sample, we selected
families which had at least two samples, resulting in 33 families in total. For each family, half of the
samples were placed into the test set and half into the training set. For families with odd-numbered
samples, the remaining sample was added to the training set. This splitting strategy resulted in a
training set of 626 apps and a testing set of 607 apps.

Using that experimental setup, Dendroid correctly classified 73% of the test apps, while Reveal-
Droid achieves a 97% correct classification rate. Although our replicated results for Dendroid are
significantly lower than the Dendroid authors’ original results [50], we verified our results with
those authors and discovered an error in their experiment.
We further compared RevealDroid’s and Dendroid’s obfuscation resiliency. To that end, we

trained both Dendroid and RevealDroid using the training set consisting of half of AMG. We then
replaced apps in the test set with their obfuscated versions—transformed as discussed in Section
3.3. The resulting test set contains 590 apps.
RevealDroid demonstrated overwhelmingly greater obfuscation resiliency than Dendroid: Re-

vealDroid obtains a 97% correct classification rate, while Dendroid’s classification rate falls to 27%.
This low result for Dendroid is unsurprising since it relies on the structure of a method as features.
Given that the call indirection transformation that we applied to the test apps alters that structure,
the transformation prevents proper classification by Dendroid.

3.5 RQ5: Feature Selection
To obtain a better understanding of the extent to which RevealDroid’s manually chosen features (i.e.,
method-level, package-level, reflection-based, and native code-based features) affect its classifiers,
we used automated feature selection to identify the features that affect RevealDroid’s results most.
Additionally, feature selection allows for faster creation of classifiers, reduced training and testing
time, and reduces the possibility of overfitting [33, 56]. Specifically, we focused on the dataset of

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:19

54,882 apps used for RQ1, where each malicious app is labeled using its family name and every
benign app is labeled as such. We obtain family labels using the methodology described in Section
3.2. By performing automated feature selection using such labeling, we are better able to understand
RevealDroid’s ability to identify malware families, rather than just its ability to distinguish benign
apps from malicious ones. Our initial dataset contains over a million features. Consequently, to
perform feature selection, we used a stochastic gradient descent (SGD) classifier, which is a classifier
based on an optimization method for unconstrained optimization problems [11, 61] that supports
incremental learning [21]. Incremental learning allows a machine learning algorithm to build a
classifier incrementally in order to avoid storing all data in memory; given the number of features
and apps we utilize, storing all of them in memory is intractable.

Through the feature-selection process described above, a total of 1,054 features were chosen. The
resulting features included 595 method-level and package-level features, 454 native call features, and
5 reflection features. The five reflection features selected were features that aggregate information
about specific Android APIs that are reflectively invoked. These features are the number of partially
resolved API invocations; the number of fully resolved API invocations; the number of reflective API
invocations, where the invoked class cannot be statically determined; the number of unresolvable
reflective API invocations; and the total number of reflective invocations in the app.
For method-level and package-level features, the selection process chose a variety of security-

sensitive API (SAPI) methods and UI-oriented API methods. The use of both security-sensitive and
UI-oriented methods to distinguish between benign and malicious apps makes sense since having
both types of information allows a classifier to identify the context necessary to decide whether
an app’s usage is malicious. For example, this intuition has been used by techniques that do not
leverage machine learning to identify malicious apps or behavior, but instead identify mismatches
among an app’s UI and program behaviors [23, 34]. SAPI methods selected include those related to
the sending and receiving of Intents, notifications, and other types of inter-process communication;
access and manipulation of security-sensitive data stores, such as a Content Provider (i.e., a type of
Android component that stores app-specific data) or SQLite database; preferences and settings of
the app or the entire Android system; location information of the device (e.g., GPS coordinates);
telephone functionality, including sending SMS messages and listening for changes of telephony
state; and low-level Android operating system functionality (e.g., asynchronous task running,
threading, power management, process killing, and process priority modification).

An assortment of UI-oriented API method types were selected, including the following: methods
for operating on different types of standard Android widgets (e.g., images, pop-up windows,
dialog windows, progress bars, etc.); web-based UI widgets (e.g., methods of the Android WebView
class); methods of the Android component type representing a single UI screen (i.e., the Android
Activity class) and its sub-components (i.e., Android Fragments); and Android graphics rendering
and animation methods.
The native code features extracted include a variety of functions associated with exploits and

security-sensitive functionality—and features associated with benign functionality. In terms of
exploits or security-sensitive functionality, the following types of functions are selected: encryption
and decryption functions (e.g. RSA functions); compression and decompression functions (e.g., for
BZ2 compression); stack unwinding (e.g., used in return-oriented programming attacks); file and
memory manipulation; concurrency control (e.g., threading and mutual-exclusion mechanisms);
external application frameworks (e.g., the Mono platform implementation of Microsoft’s .NET
Framework); and exception handling and manipulation, which is critical for writing exploit code
[37].
In terms of benign functionality, selected native code functions include graphics rendering

libraries (e.g., OpenGL libraries) and image manipluation (e.g., JPEG and PNG manipulation). In

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:20 Joshua Garcia, Mahmoud Hammad, and Sam Malek

such cases, native code is sensible to use due to improved performance from executing code
compiled for a specific hardware architecture.

3.6 RQ6: Run-Time Efficiency
The number of both benign and malicious Android apps is growing very quickly [10] making it
increasingly important that Android malware analysis scales so that such malware does not remain
undetected long enough to do major damage, or even any damage. A slow analysis of Android apps
can allow malware to propagate undetected longer. Furthermore, an efficient analysis of malware
apps is particularly beneficial for Android end users, since they can protect themselves further by
using RevealDroid’s classifiers and extractors on their Android devices.

To assess RevealDroid’s efficiency, we measured run-times for both (1) feature extraction and (2)
classifier training and testing. Note that once a classifier is trained, classifying an app using it—
whether for malware detection or family identification—is practically instantaneous. Consequently,
feature extraction and classifier training are the key bottlenecks formachine learning-basedmalware
detection and family identification.

General Feature-Extraction. To determine RevealDroid’s general run-time efficiency for ex-
tracting features, we selected 100 apps in the following manner. We first created a histogram of app
sizes with five bins, as depicted in Figure 8. From each bin, we randomly sampled 20 apps, resulting
in 100 apps in total to be used to measure RevealDroid’s feature extraction run-time efficiency.
We then ran our three types of feature extractors on each app. Recall that both package-level and
method-level feature extraction occur concurrently. Such an experiment allows us to assess the
general run-time efficiency of each type of feature ensuring that we have sampled from apps with
a variety of sizes.

Fig. 8. Histogram of app sizes from our dataset

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000
App Sizes in Bytes

102

103

104

Fr
eq

ue
nc

y
on

 L
og

 S
ca

le

47,662

4,156

1,415

255

107

Table 9 shows the results of our feature-extraction efficiency analysis. Each feature takes under
90 seconds on average to compute. Furthermore, RevealDroid is designed to extract features in
parallel, making the total feature extraction, on average, also under 90 seconds. This runtime is

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:21

reasonable for practical malware detection and family identification that is obfuscation-resilient
and accurate.

Table 9. Average feature-extraction times for each type of RevealDroid feature in seconds.

Native Reflection PAPI/MAPI

Average (s) 45.79 89.89 79.48

Feature Extraction and Classification. Another bottleneck for learning-based malware de-
tection and family identification is the time it takes for a supervised-learning algorithm to train a
classifier and, subsequently, test it. In a practical setting, classifiers need to be regularly updated and
re-trained in order to maximize the possibility that such a classifier detects new Android malware.

Table 10. Feature extraction and classification run-times in hours

RD-CART RD-LSVM Adagio MUDFLOW Drebin

Feature Extraction 84.79 84.79 56.12 1101.28 817.67
Classification – – 21.59 0.20 –

Total 84.79 84.79 77.70 1101.48 817.67

Table 10 depicts execution times, in hours, for both feature extraction and classification on 9,731
apps. The – indicates that classification takes under 2 seconds to run. For this experiment, we
compared RevealDroid’s CART (RD-CART) and linear SVM (RD-LSVM) classifiers with Adagio’s,
Drebin’s, and MUDFLOW’s classifiers. Each approach was run on our experiment machine, using
the same hardware configuration. MUDFLOW took approximately 46 days to execute; Drebin took
approximately 34 days to execute; RevealDroid’s CART and SVM classifiers each take 3.5 days to
execute; and Adagio’s classifier requires about 3 days to execute. Given RevealDroid’s superior
obfuscation resiliency and its family identification capability, along with its high accuracy and
efficiency, RevealDroid achieves its three main non-functional goals.

3.7 Discussion and Limitations
One of the major goals of RevealDroid is to aid in the selection of features that are obfuscation-
resilient, highly accurate, and highly efficient. Our results demonstrate that these three qualities
are achieved, in tandem, using RevealDroid.
Limitations of the dataset utilized by RevealDroid represents a threat to external validity. The

number of apps in our dataset affect the generalizability of our results. To maximize our study’s
generalizability, we used a relatively large dataset, consisting over 50,000 apps, to assess RevealDroid.
These apps range from 2011 to 2016.

Internal validity issuesmainly arise due to the labeling of apps as benign, malicious, and belonging
to a particular malware family. To mitigate this labeling threat, we carefully selected apps to
maximize the probability that they are correctly marked as benign or malicious (see the preamble
of Section 3). We further utilized family labels already verified by security experts (see Section 3.2).
Moreover, machine-learning algorithms themselves are partially self-corrective, through statistical
methods, for errors in the datasets.
Our choice of using DroidChameleon transformations to evaluate obfuscation resiliency of

RevealDroid, and other approaches, is a threat to construct validity. In particular, DroidChameleon
may not apply the most effective, realistic obfuscations to malware. This threat is alleviated by
DroidChameleon’s demonstrated ability to evade existing anti-virus products; its wide variety of

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:22 Joshua Garcia, Mahmoud Hammad, and Sam Malek

transformations, including those inspired by obfuscations observed in the wild; and its composite
transformations. Moreover, some apps in our dataset use obfuscations, further mitigating this
threat.
We further conducted a study where we trained on our entire app dataset and tested on 1,109

apps transformed with reflection transformations using Droid Chameleon. RevealDroid successfully
detected all these apps as malicious. In future work, we intend to include reflection transformations
as part of comparing RevealDroid with other malware detection approaches.

Although RevealDroid does extract reflection-related features, static analysis is limited in terms
of its ability to extract information related to reflection. To reduce the affect of this limitation, we
directly account for the partiality of our reflection features by representing the degree to which a
reflective call can be resolved by our analysis.

One possible way to obfuscate native calls is to utilize the dynamic linker alongwith the associated
dlopen and dlsym functions to load dynamically-linked functions. To obfuscate this behavior, a
malware author can encrypt names in a native binary and decrypt the names during runtime. To
handle this case, which has not been observed in Android malware so far, we can create features
similar to those that RevealDroid uses for reflection: RevealDroid can determine the extent to
which an invoked native call is encrypted. Given that including this type of feature worked well
for reflection-based obfuscation (see Section 3.5), these features should aid in detecting malicious
native-code obfuscations that leverage the dynamic linker. To further aid in detecting these types
of malicious behaviors, RevealDroid can also include dlopen and dlsym as native-call features
directly.

For family identification, we primarily chose a CART classifier due to the improved performance
gain compared with an SVM, with no loss of accuracy. Specifically, we obtained approximately the
same F1 score for an SVM and CART classifier, i.e., about 95% for the AMG dataset. However, while
the SVM classifier takes 3,539 seconds to run, which is nearly an hour, the CART classifier only
takes 194 seconds—which is 18 times faster. For that experiment, we selected an SVM with a linear
kernel, a penalty parameter C = 1.0, square of the hinge loss as the loss function, and 1,000 as the
maximum number of iterations.
One interesting aspect of our experiments, particularly compared to others, is the manner in

which we sample benign apps and malicious apps to conduct machine learning. Some approaches
choose imbalanced datasets [17]. Other approaches use significantly more malicious apps than
benign apps [18]. At least one study has examined a balanced dataset and an imbalanced dataset
where the majority class represents benign apps [48].

For our malware-detection experiment (Section 3.1), we chose to balance the samples. There are
two key reasons for choosing a balanced dataset. First, different Android markets have varying
levels of malicious apps compared to benign apps [23]. For example, certain Android markets
have been known to have a ratio around 60% benign to 40% malicious apps [23]. Second, previous
experiments have often chosen imbalanced datasets, which are not necessarily representative of
Android markets in general, and may result in less accurate classifiers [35]. Consequently, given
the varying degrees of ratios of benign apps to malicious apps on different Android markets, and to
avoid biasing the classifier toward either malicious or benign apps, we chose to balance our dataset.

4 RELATEDWORK
We provide an overview of the current state of Android malware detection and family identification.
We first discuss the techniques that solely aim to detect malicious Android apps. We then cover
signature-based and machine learning-based techniques that aim to identify the family of such
apps.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:23

Many non-machine learning-based Android malware detection approaches have been created.
Some approaches mainly use Android-app permissions [26, 66]. Others focus on a variety of other
risk factors to rank apps according to their suspiciousness [22, 32, 42]. A significant number of
approaches focus on data leakage using taint analyses including dynamic taint analysis [25], com-
bined static and dynamic analysis [55], taint analysis that focuses on user intention or user actions
in association with data leaks [36, 58], or analysis of leaks that occur through inter-component
communication [38, 53]. Other techniques leverage virtualization to monitor [38], reconstruct
[47, 51], or trigger [38] malicious Android app behaviors.

Besides MUDFLOW and Adagio, other approaches have used machine learning for distinguishing
between benign and malicious Android apps. DroidMat [54] distinguishes between benign and
malicious apps through various features extracted using static analysis and clustering. Furthermore,
it relies on easily obfuscatable features (e.g., names of component classes). We contacted the authors
of DroidMat multiple times to obtain its implementation so that we can compare against it. However,
none of the authors ever responded to our queries.
AppContext [57] utilizes extensive analyses and machine learning involving information flow,

Intent filters, Intent actions, and other context factors (e.g., conditions guarding security-sensitive
behaviors). Although we considered including AppContext in our study, we could not set up a
controlled experiment in the form we used to compare against MUDFLOW and Adagio for two key
reasons. First, AppContext is not distributed with its source code, preventing us from modifying its
training set as we did with MUDFLOW and Adagio. Second, this limitation further prevents us
from comparing with AppContext in terms of its training execution time. However, our analysis
takes about 30 seconds on average to analyze a single app; the AppContext study reports an
average analysis time of 647 seconds [57]. Furthermore, as discussed in Section 2.1, Intent actions
are likely to significantly reduce obfuscation resiliency due to their susceptibility to encryption
transformations.
Drebin [17] is designed to detect Android malware directly on an Android device and uses

machine learning. Drebin also uses pre-defined templates to display potentially useful information
about what makes an app malicious. Unlike RevealDroid, Drebin relies heavily on features based
on constant strings (e.g., names of components) that are obfuscatable using basic automated
transformations (e.g., renaming and encrypting identifiers and string values), as demonstrated in
our evaluation. Furthermore, their feature space is very large, containing about 545,000 features, as
compared to RevealDroid’s feature space of about 1,000 features, which allows our classification—
and potentially our feature extraction—to be significantly more efficient and scalable.

ViewDroid [59] and MassVet [23] are capable of detecting malicious Android apps and both focus
on repackaging detection. Both techniques leverage graphs based on UI widgets of an Android app.
Due to the use of control flow-based graphs, both of these techniques are potentially susceptible to
control flow-based obfuscations. RevealDroid is not vulnerable to such obfuscations, due to the fact
that it does not rely on any program-analysis graph representations. Unlike in the case of Reveal-
Droid, no automated transformations were applied to existing malicious apps to assess MassVet;
automated transformations were applied to benign apps for MassVet. However, as discussed in
the MassVet paper [23], obfuscations of malicious methods may be problematic for MassVet. Addi-
tionally, whether the transformed benign apps utilized combinations of transformations was not
discussed. Unlike MassVet and ViewDroid, RevealDroid is capable of accurately identifying the
family to which a malware belongs, and not just identifying an app as malicious. Furthermore,
RevealDroid is not limited to only detecting and identifying families of repackaged malicious apps.

A variety of other techniques use different mechanisms for detecting Android malware. DroidAn-
alytics [64] provides an automated workflow for the collection and signature generation of Android
malware by analyzing apps at the opcode level. AsDroid [34] detects stealthy behaviors of possibly

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

39:24 Joshua Garcia, Mahmoud Hammad, and Sam Malek

malicious apps characterized by mismatches between program behavior and the UI. Poeplau et
al. [43] construct a static analysis tool for identifying unsafe and malicious dynamic code loading.
HARVESTER [44] extracts features relevant to anti-analysis techniques (e.g., obfuscations and
emulator detection techniques) from Dalvik bytecode using static and dynamic analyses. Unlike
HARVESTER, RevealDroid aims to utilize lightweight static analysis and machine learning to
identify malicious apps, and directly analyzes apps’ native binaries.
Besides not identifying malware families, most of the above techniques rely on heavyweight

program analysis, unlike RevealDroid’s lightweight analysis.
Several approaches focus on identifying specific malware families. Apposcopy [27] provides

a language to specify malware signatures and a static analysis to identify apps matching those
signatures. For Apposcopy, security engineers must manually construct malware signatures, which
is a time-consuming and error-prone task.

A few approaches automatically identify the family of Android malware. Dendroid [50] utilizes
text-mining techniques and control-flow features to identify families of malicious apps. DroidSIFT
[60] employs extracted dependency graphs to determine whether an app is benign or malicious,
and the family of a malicious app.

Two approaches that automatically identify the family of Android malware using static analysis—
Dendroid and DroidSIFT—are both limited, when compared to RevealDroid, in three key ways:
(1) they have limited or no reflection features, (2) they have no native-code features and (3) they
perform a highly limited assessment for obfuscation resiliency, or no such assessment at all. Both
approaches are evaluated on a limited number of malware families and apps. On the other hand,
we evaluate RevealDroid on a dataset consisting of tens of thousands of more apps, and several
hundred more malware families studied as part of the DroidSIFT paper. Additionally, DroidSIFT
utilizes flow features, which are heavyweight to extract, as demonstrated in our experiments, and
do not account for statically unresolvable or partially resolvable reflective calls.
Both techniques have limited obfuscation resiliency, and rely on representations (e.g., control-

flow features or constant strings) that can be evaded by using standard automated transformations.
Furthermore, DroidSIFT is only assessed using unstated obfuscations applied to a small number of
apps from a single malware family.

A third approach, DroidScribe [24], uses dynamic analysis and machine learning to identify the
family to which a malicious app belongs. However, it does not determine whether an app is benign
or malicious.
None of the aforementioned approaches extract native-code features by actually analyzing an

app’s native binaries. Furthermore, RevealDroid is the only Android malware detection and family-
identification approach that combines machine learning with static analysis extraction of features
based on Android API usage, reflection, and native code.

5 CONCLUSION
This paper has introduced RevealDroid, a machine learning-based approach for Android malware
detection and family identification that is accurate, efficient, and obfuscation resilient. RevealDroid
relies on features involving security-sensitive Android API calls; reflective calls categorized accord-
ing to the degree to which invoked methods can be resolved; and invocations in native binaries
to external functions (e.g., system calls or shared library calls) and functions within the binaries.
We have compared RevealDroid with state-of-the-art tools for Android malware detection and
family identification. For Android malware detection, RevealDroid obtains an 11%-60% superior
accuracy compared to state-of-the-art tools. In the case of family identification, RevealDroid attains
a 24%-70% higher classification rate. Our experiments showcase RevealDroid’s high accuracy and
efficiency (e.g., a 98% F1 score for 54,882 apps and an app extraction time of 90 seconds on average),

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:25

with particularly high accuracy under various obfuscations. We further compared RevealDroid to a
state-of-the-art family-identification approach, demonstrating significantly higher accuracy—95%
accuracy on a high quality Android malware family dataset—especially in the face of obfuscations.
In the future, we intend to explore feature characteristics of emerging malware apps—such as

those that infect an Android device’s Master Boot Record [7] and stealthily utilizing devices to
mine cryptocurrency services [2]—in order to detect and identify the families of those malware. To
enable replication of our results and improvement over RevealDroid, we make our RevealDroid
prototype and data available online at [4].

ACKNOWLEDGMENTS
This work was supported in part by awards CCF-1252644, CNS-1629771, and CCF-1618132 from the
National Science Foundation, HSHQDC-14-C-B0040 from the Department of Homeland Security,
and FA95501610030 from the Air Force Office of Scientific Research.

REFERENCES
[1] Android trojan looks, acts like windows malware. http://www.snoopwall.com/android-trojan-looks-acts-like-windows-

malware/.
[2] Bitcoin-mining malware reportedly found on google play. http://www.cnet.com/news/bitcoin-mining-malware-

reportedly-discovered-at-google-play/.
[3] Cisco 2014 annual security report. http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html.
[4] RevealDroid. http://tiny.cc/revealdroid.
[5] Server-side polymorphic android applications. http://www.symantec.com/connect/blogs/server-side-polymorphic-

android-applications.
[6] The Drebin Dataset. http://user.informatik.uni-goettingen.de/ darp/drebin/.
[7] Threat description trojan:android/oldboot.a. https://www.f-secure.com/v-descs/trojan_android_oldboot_a.shtml.
[8] VirusShare.com. http://www.virusshare.com/.
[9] VirusTotal. https://www.virustotal.com/.
[10] Quick Heal Annual Threat Report 2015. http://www.quickheal.co.in/resources/threat-reports, January 2015.
[11] 1.5. Stochastic Gradient Descent — scikit-learn 0.18.2 documentation. http://scikit-learn.org/stable/modules/sgd.html,

2017.
[12] M. Alazab, V. Monsamy, L. Batten, P. Lantz, and R. Tian. Analysis of malicious and benign android applications. In

Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International Conference on, pages 608–616. IEEE, 2012.
[13] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Are Your Training Datasets Yet Relevant?, pages 51–67. Springer

International Publishing, Cham, 2015.
[14] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting millions of android apps for the research

community. In Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages 468–471. IEEE,
2016.

[15] M. Aly. Survey on multiclass classification methods. Neural Netw, pages 1–9, 2005.
[16] A. Apvrille and R. Nigam. Obfuscation in android malware, and how to fight back. Virus Bulletin, 2014.
[17] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and C. Siemens. Drebin: Effective and explainable detection

of android malware in your pocket. In Proc. of Network and Distributed System Security Symposium (NDSS), 2014.
[18] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and E. Bodden. Mining apps for abnormal usage

of sensitive data. ICSE, 2015.
[19] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting android dalvik bytecode to jimple for static

analysis with soot. In Proceedings of the ACM SIGPLAN International Workshop on State of the Art in Java Program
analysis, pages 27–38. ACM, 2012.

[20] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees. CRC press, 1984.
[21] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. In Advances in neural

information processing systems, pages 409–415, 2001.
[22] S. Chakradeo, B. Reaves, P. Traynor, andW. Enck. Mast: Triage for market-scale mobile malware analysis. In Proceedings

of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’13, pages 13–24, New
York, NY, USA, 2013. ACM.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

http://scikit-learn.org/stable/modules/sgd.html

39:26 Joshua Garcia, Mahmoud Hammad, and Sam Malek

[23] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu. Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale. In 24th USENIX Security Symposium (USENIX Security 15), pages
659–674, Washington, D.C., Aug. 2015. USENIX Association.

[24] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder, and L. Cavallaro. Droidscribe: Classifying android
malware based on runtime behavior. In Security and Privacy Workshops (SPW), 2016 IEEE, pages 252–261. IEEE, 2016.

[25] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[26] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application certification. In Proceedings of the
16th ACM Conference on Computer and Communications Security, pages 235–245. ACM, 2009.

[27] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based detection of android malware through static
analysis. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, pages 576–587, New York, NY, USA, 2014. ACM.

[28] J. Garcia, M. Hammad, and S. Malek. Lightweight, obfuscation-resilient detection and family identification of android
malware. Technical Report UCI-ISR-16-2, Institute for Software Research, Irvine, California, 2016.

[29] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek. Obfuscation-resilient, efficient, and accurate
detection and family identification of android malware. Technical Report GMU-CS-TR-2015-10, Department of CS,
George Mason University, Fairfax, Virginia, 2015.

[30] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection of android malware using embedded call graphs.
In Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, AISec ’13, pages 45–54, New York, NY,
USA, 2013. ACM.

[31] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against app descriptions. In Proceedings of the
36th International Conference on Software Engineering, pages 1025–1035, New York, NY, USA, 2014. ACM.

[32] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pages
281–294. ACM, 2012.

[33] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of machine learning research,
3(Mar):1157–1182, 2003.

[34] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid: Detecting stealthy behaviors in android applications by
user interface and program behavior contradiction. In Proceedings of the 36th International Conference on Software
Engineering, pages 1036–1046, New York, NY, USA, 2014. ACM.

[35] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent data analysis, 6(5):429–449,
2002.

[36] J. C. J. Keng, T. K. Wee, L. Jiang, and R. K. Balan. The case for mobile forensics of private data leaks: Towards large-scale
user-oriented privacy protection. In Proceedings of the 4th Asia-Pacific Workshop on Systems, page 6. ACM, 2013.

[37] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell. The shellcoder’s handbook. Edycja polska.
Helion, Gliwice, 2004.

[38] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel.
Iccta: Detecting inter-component privacy leaks in android apps. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages 280–291, Piscataway, NJ, USA, 2015. IEEE Press.

[39] B. Livshits, J. Whaley, and M. S. Lam. Programming Languages and Systems: Third Asian Symposium, APLAS 2005,
Tsukuba, Japan, November 2-5, 2005. Proceedings, chapter Reflection Analysis for Java, pages 139–160. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[40] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware analysis. In Security and Privacy,
2007. SP’07. IEEE Symposium on, pages 231–245. IEEE, 2007.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al. Scikit-learn: Machine learning in python. The Journal of Machine Learning Research, 12:2825–2830,
2011.

[42] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and I. Molloy. Using probabilistic generative
models for ranking risks of android apps. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pages 241–252. ACM, 2012.

[43] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Execute this! analyzing unsafe and malicious
dynamic code loading in android applications. In Proceedings of the 20th Annual Network & Distributed System Security
Symposium (NDSS), 2014.

[44] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. Harvesting runtime values in android applications that feature
anti-analysis techniques. In The Network and Distributed System Security Symposium 2016, 2016.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

Obfuscation-Resilient Detection and Family Identification of Android Malware 39:27

[45] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating android anti-malware against transformation attacks. In
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, pages 329–334.
ACM, 2013.

[46] V. Rastogi, Y. Chen, and X. Jiang. Catch me if you can: Evaluating android anti-malware against transformation attacks.
Information Forensics and Security, IEEE Transactions on, 9(1):99–108, Jan 2014.

[47] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis and stimulation technique to automatically
reconstruct android malware behaviors. European Workshop on Systems Security (EuroSec), April, 2013.

[48] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P. Ranganath, H. Li, and N. Guevara. Experimental study
with real-world data for android app security analysis using machine learning. In Proceedings of the 31st Annual
Computer Security Applications Conference, pages 81–90. ACM, 2015.

[49] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero. Avclass: A tool for massive malware labeling. In International
Symposium on Research in Attacks, Intrusions, and Defenses, pages 230–253. Springer, 2016.

[50] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco. Dendroid: A text mining approach to analyzing and
classifying code structures in android malware families. Expert Systems with Applications, 41(4):1104–1117, 2014.

[51] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copperdroid: Automatic reconstruction of android malware behaviors.
In Proc. of the Symposium on Network and Distributed System Security (NDSS), 2015.

[52] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot-a java bytecode optimization framework.
In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative research, page 13. IBM Press,
1999.

[53] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and general inter-component data flow analysis framework for
security vetting of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 1329–1341, New York, NY, USA, 2014. ACM.

[54] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat: Android malware detection through manifest and
api calls tracing. In Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on, pages 62–69. IEEE, 2012.

[55] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective real-time android application auditing. In IEEE Symposium on
Security and Privacy, 2015.

[56] E. P. Xing, M. I. Jordan, R. M. Karp, et al. Feature selection for high-dimensional genomic microarray data. In Proceedings
of the Eighteenth International Conference on Machine Learning, volume 1, pages 601–608. Citeseer, 2001.

[57] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appcontext: Differentiating malicious and benign mobile
app behaviors using context. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on,
volume 1, pages 303–313, May 2015.

[58] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent: Analyzing sensitive data transmission in android
for privacy leakage detection. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 1043–1054. ACM, 2013.

[59] F. Zhang, H. Huang, S. Zhu, D.Wu, and P. Liu. Viewdroid: Towards obfuscation-resilient mobile application repackaging
detection. In Proceedings of the 2014 ACM conference on Security and privacy in wireless & mobile networks, pages 25–36.
ACM, 2014.

[60] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android malware classification using weighted contextual
api dependency graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 1105–1116. ACM, 2014.

[61] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML 2004:
PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFERENCE ON MACHINE LEARNING. OMNIPRESS,
pages 919–926, 2004.

[62] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang. Vetting undesirable behaviors in android apps
with permission use analysis. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 611–622, New York, NY, USA, 2013. ACM.

[63] M. Zheng, P. P. Lee, and J. C. Lui. Adam: an automatic and extensible platform to stress test android anti-virus systems.
In Detection of Intrusions and Malware, and Vulnerability Assessment, pages 82–101. Springer, 2013.

[64] M. Zheng, M. Sun, and J. Lui. Droid analytics: A signature based analytic system to collect, extract, analyze and
associate android malware. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2013 12th
IEEE International Conference on, pages 163–171. IEEE, 2013.

[65] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 95–109. IEEE, 2012.

[66] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: Detecting malicious apps in official and
alternative android markets. In Proceedings of Network and Distributed System Security Symposium (NDSS), 2012.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: June 2016.

	Abstract
	1 Introduction
	2 RevealDroid
	2.1 Features Chosen for Learning
	2.2 Labeling and Classifier Selection
	2.3 Android API-Usage Extraction
	2.4 Reflective Feature Extraction
	2.5 Native Call Extraction
	2.6 Other Features Considered

	3 Evaluation Design and Results
	3.1 RQ1: Detection Accuracy
	3.2 RQ2: Family Identification
	3.3 RQ3: Detection Comparison
	3.4 RQ4: Family-Identification Comparison
	3.5 RQ5: Feature Selection
	3.6 RQ6: Run-Time Efficiency
	3.7 Discussion and Limitations

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

